Первообразная равна 0. Первообразная функция и неопределенный интеграл

Для каждого математического действия существует обратное ему действие. Для действия дифференцирования (нахождения производных функций) тоже существует обратное действие — интегрирование. Посредством интегрирования находят (восстанавливают) функцию по заданной ее производной или дифференциалу. Найденную функцию называют первообразной .

Определение. Дифференцируемая функция F (x) называется первообразной для функции f (x) на заданном промежутке, если для всех х из этого промежутка справедливо равенство: F′(x)=f (x) .

Примеры. Найти первообразные для функций: 1) f (x)=2x; 2) f (x)=3cos3x.

1) Так как (х²)′=2х, то, по определению, функция F (x)=x² будет являться первообразной для функции f (x)=2x.

2) (sin3x)′=3cos3x. Если обозначить f (x)=3cos3x и F (x)=sin3x, то, по определению первообразной, имеем: F′(x)=f (x), и, значит, F (x)=sin3x является первообразной для f (x)=3cos3x.

Заметим, что и (sin3x+5 )′=3cos3x , и (sin3x-8,2 )′=3cos3x , ... в общем виде можно записать: (sin3x)′=3cos3x , где С — некоторая постоянная величина. Эти примеры говорят о неоднозначности действия интегрирования, в отличие от действия дифференцирования, когда у любой дифференцируемой функции существует единственная производная.

Определение. Если функция F (x) является первообразной для функции f (x) на некотором промежутке, то множество всех первообразных этой функции имеет вид:

F (x)+C , где С — любое действительное число.

Совокупность всех первообразных F (x)+C функции f (x) на рассматриваемом промежутке называется неопределенным интегралом и обозначается символом (знак интеграла). Записывают: ∫f (x) dx=F (x)+C .

Выражение ∫f (x) dx читают: «интеграл эф от икс по дэ икс».

f (x) dx — подынтегральное выражение,

f (x) — подынтегральная функция,

х — переменная интегрирования.

F (x) — первообразная для функции f (x) ,

С — некоторая постоянная величина.

Теперь рассмотренные примеры можно записать так:

1) 2хdx=x²+C. 2) ∫ 3cos3xdx=sin3x+C.

Что же означает знак d?

d — знак дифференциала — имеет двойное назначение: во-первых, этот знак отделяет подынтегральную функцию от переменной интегрирования; во-вторых, все, что стоит после этого знака диференцируется по умолчанию и умножается на подынтегральную функцию.

Примеры. Найти интегралы: 3) 2pxdx; 4) 2pxdp.

3) После значка дифференциала d стоит х х , а р

2хрdx=рх²+С. Сравните с примером 1).

Сделаем проверку. F′(x)=(px²+C)′=p·(x²)′+C′=p·2x=2px=f (x).

4) После значка дифференциала d стоит р . Значит, переменная интегрирования р , а множитель х следует считать некоторой постоянной величиной.

2хрdр=р²х+С. Сравните с примерами 1) и 3).

Сделаем проверку. F′(p)=(p²x+C)′=x·(p²)′+C′=x·2p=2px=f (p).


Определение первообразной.

Первообразной функции f(x) на промежутке (a; b) называется такая функция F(x) , что выполняется равенство для любого х из заданного промежутка.

Если принять во внимание тот факт, что производная от константы С равна нулю, то справедливо равенство . Таким образом, функция f(x) имеет множество первообразных F(x)+C , для произвольной константы С , причем эти первообразные отличаются друг от друга на произвольную постоянную величину.


Определение неопределенного интеграла.

Все множество первообразных функции f(x) называется неопределенным интегралом этой функции и обозначается .

Выражение называют подынтегральным выражением , а f(x) – подынтегральной функцией . Подынтегральное выражение представляет собой дифференциал функции f(x) .

Действие нахождения неизвестной функции по заданному ее дифференциалу называется неопределенным интегрированием, потому что результатом интегрирования является не одна функция F(x) , а множество ее первообразных F(x)+C .

На основании свойств производной можно сформулировать и доказать свойства неопределенного интеграла (свойства первообразной).

Промежуточные равенства первого и второго свойств неопределенного интеграла приведены для пояснения.

Для доказательства третьего и четвертого свойств достаточно найти производные от правых частей равенств:

Эти производные равны подынтегральным функциям, что и является доказательством в силу первого свойства. Оно же используется в последних переходах.


Таким образом, задача интегрирования является обратной задаче дифференцирования, причем между этими задачами очень тесная связь:

  • первое свойство позволяет проводить проверку интегрирования. Чтобы проверить правильность выполненного интегрирования достаточно вычислить производную полученного результата. Если полученная в результате дифференцирования функция окажется равной подынтегральной функции, то это будет означать, что интегрирование проведено верно;
  • второе свойство неопределенного интеграла позволяет по известному дифференциалу функции найти ее первообразную. На этом свойстве основано непосредственное вычисление неопределенных интегралов.

Рассмотрим пример.

Пример.

Найти первообразную функции , значение которой равно единице при х = 1 .

Решение.

Мы знаем из дифференциального исчисления, что (достаточно заглянуть в таблицу производных основных элементарных функций). Таким образом, . По второму свойству . То есть, имеем множество первообразных . При х = 1 получим значение . По условию, это значение должно быть равно единице, следовательно, С = 1 . Искомая первообразная примет вид .

Пример.

Найти неопределенный интеграл и результат проверить дифференцированием.

Решение.

По формуле синуса двойного угла из тригонометрии , поэтому

Документ

Некотором промежутке Х. Если для любого хХ F"(x) = f(x), то функция F называется первообразной для функции f на промежутке Х. Первообразную для функции можно попытаться найти...

  • Первообразной для функции

    Документ

    ... . Функция F(x) называется первообразной для функции f(x) на промежутке (a;b), если для всех x(a;b) выполняется равенство F(x) = f(x). Например, для функции x2 первообразной будет функция x3 ...

  • Основы интегрального исчисления Учебное пособие

    Учебное пособие

    ... ; 5. Найти интеграл. ; B) ; C) ; D) ; 6. Функция называется первообразной к функции на множестве, если: для всех; в некоторой точке; для всех; в некоторой... интервалом. Определение 1. Функция называется первообразной для функции на множестве, ...

  • Первообразная Неопределённый интеграл

    Документ

    Интегрирования. Первообразная . Непрерывная функция F (x) называется первообразной для функции f (x) на промежутке X , если для каждого F’ (x) = f (x). П р и м е р. Функция F (x) = x 3 является первообразной для функции f (x) = 3x ...

  • СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ СССР Утверждено Учебно-методическим управлением по высшему образованию ВЫСШАЯ МАТЕМАТИКА МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ (С ПРОГРАММОЙ) для студентов-заочников инженерно-технических специальностей

    Методические указания

    Вопросы для самопроверки Дайте определение первообразной функции . Укажите геометрический смысл совокупности первообразных функций . Что называется неопределенным...

  • Одна из операций дифференцирования- нахождение производной (дифференциала) и применении к исследованию функций.

    Не менее важной является обратная задача. Если известно поведение функции в окрестностях каждой точки ее определения, то как восстановить функцию в целом, т.е. во всей области ее определения. Эта задача составляет предмет изучения так называемого интегрального исчисления.

    Интегрированием называется действие обратное дифференцированию. Или восстановление функции f(х) по данной производной f`(х). Латинское слово “integro” означает – восстановление.

    Пример №1 .

    Пусть (f(х))’ = 3х 2 . Найдем f(х).

    Решение:

    Опираясь на правило дифференцирования, нетрудно догадаться, что f(х)=х 3 , ибо

    (х 3)’ = 3х 2 Однако, легко можно заметить, что f(х) находится неоднозначно. В качестве f(х) можно взять f(х)= х 3 +1 f(х)= х 3 +2 f(х)= х 3 -3 и др.

    Т.к. производная каждой из них равно 3х 2 . (Производная постоянной равна 0). Все эти функции отличаются друг от друга постоянным слагаемым. Поэтому общее решение задачи можно записать в виде f(х)= х 3 +С, где С - любое постоянное действительное число.

    Любую из найденных функций f(х) называют первообразной для функции F`(х)= 3х 2

    Определение.

    Функция F(х) называется первообразной для функции f(х) на заданном промежутке J, если для всех х из этого промежутка F`(х)= f(х). Так функция F(х)=х 3 первообразная для f(х)=3х 2 на (- ∞ ; ∞). Так как, для всех х ~R справедливо равенство: F`(х)=(х 3)`=3х 2

    Как мы уже заметили, данная функция имеет бесконечное множество первообразных.

    Пример №2.

    Функция есть первообразная для всех на промежутке (0; +∞), т.к. для всех ч из этого промежутка, выполняется равенство.

    Задача интегрирования состоит в том, чтобы для заданной функции найти все ее первообразные. При решении этой задачи важную роль играет следующее утверждение:

    Признак постоянства функции. Если F"(х) = 0 на некотором промежутке I, то функция F - постоянная на этом промежутке.

    Доказательство.

    Зафиксируем некоторое x 0 из промежутка I. Тогда для любого числа х из такого промежутка в силу формулы Лагранжа можно указать такое число c, заключенное между х и x 0 , что

    F(x) - F(x 0) = F"(c)(x-x 0).

    По условию F’ (с) = 0, так как с ∈1, следовательно,

    F(x) - F(x 0) = 0.

    Итак, для всех х из промежутка I

    т е. функция F сохраняет постоянное значение.

    Все первообразные функции f можно записать с помощью одной формулы, которую называютобщим видом первообразных для функции f. Справедлива следующая теорема (основное свойство первообразных ):

    Теорема. Любая первообразная для функции f на промежутке I может быть записана в виде

    F(x) + C, (1) где F (х) - одна из первообразных для функции f (x) на промежутке I, а С - произвольная постоянная.

    Поясним это утверждение, в котором кратко сформулированы два свойства первообразной:

    1. какое бы число ни поставить в выражение (1) вместо С, получим первообразную для f на промежутке I;
    2. какую бы первообразную Ф для f на промежутке I ни взять, можно подобрать такое число С, что для всех х из промежутка I будет выполнено равенство

    Доказательство.

    1. По условию функция F - первообразная для f на промежутке I. Следовательно, F"(х)= f (х) для любого х∈1, поэтому (F(x) + C)" = F"(x) + C"=f(x)+0=f(x), т. е. F(x) + C - первообразная для функции f.
    2. Пусть Ф (х) - одна из первообразных для функции f на том же промежутке I, т. е. Ф"(x) = f (х) для всех x∈I.

    Тогда (Ф(x) - F (x))" = Ф"(х)-F’ (х) = f(x)-f(x)=0.

    Отсюда следует в. силу признака постоянства функции, что разность Ф(х) - F(х) есть функция, принимающая некоторое постоянное значение С на промежутке I.

    Таким образом, для всех х из промежутка I справедливо равенство Ф(х) - F(x)=С, что и требовалось доказать. Основному свойству первообразной можно придать геометрический смысл: графики любых двух первообразных для функции f получаются друг из друга параллельным переносом вдоль оси Оу

    Вопросы к конспектам

    Функция F(x) является первообразной для функции f(x). Найдите F(1), если f(x)=9x2 - 6x + 1 и F(-1) = 2.

    Найдите все первообразные для функции

    Для функции (x) = cos2 * sin2x, найдите первообразную F(x), если F(0) = 0.

    Для функции найдите первообразную, график которой проходит через точку

    Этот урок — первый из серии видео, посвященных интегрированию. В нём мы разберём, что такое первообразная функции, а также изучим элементарные приёмы вычисления этих самых первообразных.

    На самом деле здесь нет ничего сложного: по существу всё сводится к понятию производной, с которым вы уже должны знакомы.:)

    Сразу отмечу, что, поскольку это самый первый урок в нашей новой теме, сегодня не будет никаких сложных вычислений и формул, но то, что мы изучим сегодня, ляжет в основу гораздо более сложных выкладок и конструкций при вычислении сложных интегралов и площадей.

    Кроме того, приступая к изучению интегрирования и интегралов в частности, мы неявно предполагаем, что ученик уже, как минимум, знаком к понятиям производной и имеет хотя бы элементарные навыки их вычисления. Без четкого понимания этого, делать в интегрировании совершенно нечего.

    Однако здесь же кроется одна из самых частых и коварных проблем. Дело в том, что, начиная вычислять свои первые первообразные, многие ученики путают их с производными. В результате на экзаменах и самостоятельных работах допускаются глупые и обидные ошибки.

    Поэтому сейчас я не буду давать четкого определения первообразной. А взамен предлагаю вам посмотреть, как она считается на простом конкретном примере.

    Что такое первообразная и как она считается

    Мы знаем такую формулу:

    \[{{\left({{x}^{n}} \right)}^{\prime }}=n\cdot {{x}^{n-1}}\]

    Считается эта производная элементарно:

    \[{f}"\left(x \right)={{\left({{x}^{3}} \right)}^{\prime }}=3{{x}^{2}}\]

    Посмотрим внимательно на полученное выражение и выразим ${{x}^{2}}$:

    \[{{x}^{2}}=\frac{{{\left({{x}^{3}} \right)}^{\prime }}}{3}\]

    Но мы можем записать и так, согласно определению производной:

    \[{{x}^{2}}={{\left(\frac{{{x}^{3}}}{3} \right)}^{\prime }}\]

    А теперь внимание: то, что мы только что записали и есть определением первообразной. Но, чтобы записать ее правильно, нужно написать следующее:

    Аналогично запишем и такое выражение:

    Если мы обобщим это правило, то сможем вывести такую формулу:

    \[{{x}^{n}}\to \frac{{{x}^{n+1}}}{n+1}\]

    Теперь мы можем сформулировать четкое определение.

    Первообразной функции называется такая функция, производная которой равна исходной функции.

    Вопросы о первообразной функции

    Казалось бы, довольно простое и понятное определение. Однако, услышав его, у внимательного ученика сразу возникнет несколько вопросов:

    1. Допустим, хорошо, эта формула верна. Однако в этом случае при $n=1$ у нас возникают проблемы: в знаменателе появляется «ноль», а на «ноль» делить нельзя.
    2. Формула ограничивается только степенями. Как считать первообразную, например, синуса, косинуса и любой другой тригонометрии, а также констант.
    3. Экзистенциальный вопрос: а всегда ли вообще можно найти первообразную? Если да, то как быть с первообразной суммы, разности, произведения и т.д.?

    На последний вопрос я отвечу сразу. К сожалению, первообразная, в отличие от производной, считается не всегда. Нет такой универсальной формулы, по которой из любой исходной конструкции мы получим функцию, которая будет равна этой сходной конструкции. А что касается степеней и констант — сейчас мы об этом поговорим.

    Решение задач со степенными функциями

    \[{{x}^{-1}}\to \frac{{{x}^{-1+1}}}{-1+1}=\frac{1}{0}\]

    Как видим, данная формула для ${{x}^{-1}}$ не работает. Возникает вопрос: а что тогда работает? Неужели мы не можем посчитать ${{x}^{-1}}$? Конечно, можем. Только давайте для начала вспомним такое:

    \[{{x}^{-1}}=\frac{1}{x}\]

    Теперь подумаем: производная какой функции равна $\frac{1}{x}$. Очевидно, что любой ученик, который хоть немного занимался этой темой, вспомнит, что этому выражению равна производная натурального логарифма:

    \[{{\left(\ln x \right)}^{\prime }}=\frac{1}{x}\]

    Поэтому мы с уверенностью можем записать следующее:

    \[\frac{1}{x}={{x}^{-1}}\to \ln x\]

    Эту формулу нужно знать, точно так же, как и производную степенной функции.

    Итак, что нам известно на данный момент:

    • Для степенной функции — ${{x}^{n}}\to \frac{{{x}^{n+1}}}{n+1}$
    • Для константы — $=const\to \cdot x$
    • Частный случай степенной функции — $\frac{1}{x}\to \ln x$

    А если простейшие функции мы начнем умножать и делить, как тогда посчитать первообразную произведения или частного. К сожалению, аналогии с производной произведения или частного здесь не работают. Какой-либо стандартной формулы не существует. Для некоторых случаев существуют хитрые специальные формулы — с ними мы познакомимся на будущих видеоуроках.

    Однако запомните: общей формулы, аналогичной формуле для вычисления производной частного и произведения, не существует.

    Решение реальных задач

    Задача № 1

    Давайте каждую из степенных функций посчитаем отдельно:

    \[{{x}^{2}}\to \frac{{{x}^{3}}}{3}\]

    Возвращаясь к нашему выражению, мы запишем общую конструкцию:

    Задача № 2

    Как я уже говорил, первообразные произведений и частного «напролом» не считаются. Однако здесь можно поступить следующим образом:

    Мы разбили дробь на сумму двух дробей.

    Посчитаем:

    Хорошая новость состоит в том, что зная формулы вычисления первообразных, вы уже способны считать более сложные конструкции. Однако давайте пойдем дальше и расширим наши знания еще чуть-чуть. Дело в том, что многие конструкции и выражения, которые, на первый взгляд, не имеют никакого отношения к ${{x}^{n}}$, могут быть представлены в виде степени с рациональным показателем, а именно:

    \[\sqrt{x}={{x}^{\frac{1}{2}}}\]

    \[\sqrt[n]{x}={{x}^{\frac{1}{n}}}\]

    \[\frac{1}{{{x}^{n}}}={{x}^{-n}}\]

    Все эти приемы можно и нужно комбинировать. Степенные выражения можно

    • умножать (степени складываются);
    • делить (степени вычитаются);
    • умножать на константу;
    • и т.д.

    Решение выражений со степенью с рациональным показателем

    Пример № 1

    Посчитаем каждый корень отдельно:

    \[\sqrt{x}={{x}^{\frac{1}{2}}}\to \frac{{{x}^{\frac{1}{2}+1}}}{\frac{1}{2}+1}=\frac{{{x}^{\frac{3}{2}}}}{\frac{3}{2}}=\frac{2\cdot {{x}^{\frac{3}{2}}}}{3}\]

    \[\sqrt{x}={{x}^{\frac{1}{4}}}\to \frac{{{x}^{\frac{1}{4}}}}{\frac{1}{4}+1}=\frac{{{x}^{\frac{5}{4}}}}{\frac{5}{4}}=\frac{4\cdot {{x}^{\frac{5}{4}}}}{5}\]

    Итого всю нашу конструкцию можно записать следующим образом:

    Пример № 2

    \[\frac{1}{\sqrt{x}}={{\left(\sqrt{x} \right)}^{-1}}={{\left({{x}^{\frac{1}{2}}} \right)}^{-1}}={{x}^{-\frac{1}{2}}}\]

    Следовательно, мы получим:

    \[\frac{1}{{{x}^{3}}}={{x}^{-3}}\to \frac{{{x}^{-3+1}}}{-3+1}=\frac{{{x}^{-2}}}{-2}=-\frac{1}{2{{x}^{2}}}\]

    Итого, собирая все в одно выражение, можно записать:

    Пример № 3

    Для начала заметим, что $\sqrt{x}$ мы уже считали:

    \[\sqrt{x}\to \frac{4{{x}^{\frac{5}{4}}}}{5}\]

    \[{{x}^{\frac{3}{2}}}\to \frac{{{x}^{\frac{3}{2}+1}}}{\frac{3}{2}+1}=\frac{2\cdot {{x}^{\frac{5}{2}}}}{5}\]

    Перепишем:

    Надеюсь, я никого не удивлю, если скажу, что то, что мы только что изучали — это лишь самые простые вычисления первообразных, самые элементарные конструкции. Давайте сейчас рассмотрим чуть более сложные примеры, в которых помимо табличных первообразных еще потребуется вспомнить школьную программу, а именно, формулы сокращенного умножения.

    Решение более сложных примеров

    Задача № 1

    Вспомним формулу квадрата разности:

    \[{{\left(a-b \right)}^{2}}={{a}^{2}}-ab+{{b}^{2}}\]

    Давайте перепишем нашу функцию:

    Первообразную такой функции нам сейчас предстоит найти:

    \[{{x}^{\frac{2}{3}}}\to \frac{3\cdot {{x}^{\frac{5}{3}}}}{5}\]

    \[{{x}^{\frac{1}{3}}}\to \frac{3\cdot {{x}^{\frac{4}{3}}}}{4}\]

    Собираем все в общую конструкцию:

    Задача № 2

    В этом случае нам нужно раскрыть куб разности. Вспомним:

    \[{{\left(a-b \right)}^{3}}={{a}^{3}}-3{{a}^{2}}\cdot b+3a\cdot {{b}^{2}}-{{b}^{3}}\]

    С учетом этого факта можно записать так:

    Давайте немного преобразуем нашу функцию:

    Считаем как всегда — по каждому слагаемому отдельно:

    \[{{x}^{-3}}\to \frac{{{x}^{-2}}}{-2}\]

    \[{{x}^{-2}}\to \frac{{{x}^{-1}}}{-1}\]

    \[{{x}^{-1}}\to \ln x\]

    Запишем полученную конструкцию:

    Задача № 3

    Сверху у нас стоит квадрат суммы, давайте его раскроем:

    \[\frac{{{\left(x+\sqrt{x} \right)}^{2}}}{x}=\frac{{{x}^{2}}+2x\cdot \sqrt{x}+{{\left(\sqrt{x} \right)}^{2}}}{x}=\]

    \[=\frac{{{x}^{2}}}{x}+\frac{2x\sqrt{x}}{x}+\frac{x}{x}=x+2{{x}^{\frac{1}{2}}}+1\]

    \[{{x}^{\frac{1}{2}}}\to \frac{2\cdot {{x}^{\frac{3}{2}}}}{3}\]

    Давайте напишем итоговое решение:

    А теперь внимание! Очень важная вещь, с которой связана львиная доля ошибок и недопониманий. Дело в том, что до сих пор считая первообразные с помощью производных, приводя преобразования, мы не задумывались о том, чему равна производная константы. А ведь производная константы равна «нулю». А это означает, что можно записать такие варианты:

    1. ${{x}^{2}}\to \frac{{{x}^{3}}}{3}$
    2. ${{x}^{2}}\to \frac{{{x}^{3}}}{3}+1$
    3. ${{x}^{2}}\to \frac{{{x}^{3}}}{3}+C$

    Вот это очень важно понимать: если производная функции всегда одна и та же, то первообразных у одной и той же функции бесконечно много. Просто к нашим первообразным мы можем дописывать любые числа-константы и получать новые.

    Неслучайно, в пояснении к тем задачам, которые мы только что решали, было написано «Запишите общий вид первообразных». Т.е. уже заранее предполагается, что их не одна, а целое множество. Но, на самом деле, они отличаются лишь константой $C$ в конце. Потому в наших задачах мы исправим то, что мы не дописали.

    Еще раз переписываем наши конструкции:

    В таких случаях следует дописывать, что $C$ — константа — $C=const$.

    Во второй нашей функции мы получим следующую конструкцию:

    И последняя:

    И вот теперь мы действительно получили то, что от нас требовалось в исходном условии задачи.

    Решение задач на нахождение первообразных с заданной точкой

    Сейчас, когда мы знаем о константах и об особенностях записи первообразных, вполне логично возникает следующий тип задач, когда из множества всех первообразных требуется найти одну-единственную такую, которая проходила бы через заданную точку. В чем состоит эта задача?

    Дело в том, что все первообразные данной функции отличаются лишь тем, что они сдвинуты по вертикали на какое-то число. А это значит, что какую бы точку на координатной плоскости мы не взяли, обязательно пройдет одна первообразная, и, причем, только одна.

    Итак, задачи, которые сейчас мы будем решать, сформулированы следующем образом: не просто найти первообразную, зная формулу исходной функции, а выбрать именно такую из них, которая проходит через заданную точку, координаты которой будут даны в условии задачи.

    Пример № 1

    Для начала просто посчитаем каждое слагаемое:

    \[{{x}^{4}}\to \frac{{{x}^{5}}}{5}\]

    \[{{x}^{3}}\to \frac{{{x}^{4}}}{4}\]

    Теперь подставляем эти выражения в нашу конструкцию:

    Эта функция должна проходить через точку $M\left(-1;4 \right)$. Что значит, что она проходит через точку? Это значит, что если вместо $x$ поставить везде $-1$, а вместо $F\left(x \right)$ — $-4$, то мы должны получить верное числовое равенство. Давайте так и сделаем:

    Мы видим, что у нас получилось уравнение относительно $C$, поэтому давайте попробуем его решить:

    Давайте запишем то самое решение, которое мы искали:

    Пример № 2

    В первую очередь необходимо раскрыть квадрат разности по формуле сокращенного умножения:

    \[{{x}^{2}}\to \frac{{{x}^{3}}}{3}\]

    Исходная конструкция запишется следующим образом:

    Теперь давайте найдем $C$: подставим координаты точки $M$:

    \[-1=\frac{8}{3}-12+18+C\]

    Выражаем $C$:

    Осталось отобразить итоговое выражение:

    Решение тригонометрических задач

    В качестве финального аккорда к тому, что мы только что разобрали, предлагаю рассмотреть две более сложные задачи, в которых содержится тригонометрия. В них точно так же потребуется найти первообразные для всех функций, затем выбрать из этого множества одну-единственную, которая проходит через точку $M$ на координатной плоскости.

    Забегая наперед, хотел бы отметить, что тот прием, который мы сейчас будем использовать для нахождения первообразных от тригонометрических функций, на самом деле, является универсальным приемом для самопроверки.

    Задача № 1

    Вспомним следующую формулу:

    \[{{\left(\text{tg}x \right)}^{\prime }}=\frac{1}{{{\cos }^{2}}x}\]

    Исходя из этого, мы можем записать:

    Давайте подставим координаты точки $M$ в наше выражение:

    \[-1=\text{tg}\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}+C\]

    Перепишем выражение с учетом этого факта:

    Задача № 2

    Тут будет чуть сложнее. Сейчас увидите, почему.

    Вспомним такую формулу:

    \[{{\left(\text{ctg}x \right)}^{\prime }}=-\frac{1}{{{\sin }^{2}}x}\]

    Чтобы избавится от «минуса», необходимо сделать следующее:

    \[{{\left(-\text{ctg}x \right)}^{\prime }}=\frac{1}{{{\sin }^{2}}x}\]

    Вот наша конструкция

    Подставим координаты точки $M$:

    Итого запишем окончательную конструкцию:

    Вот и все, о чем я хотел сегодня вам рассказать. Мы изучили сам термин первообразных, как считать их от элементарных функций, а также как находить первообразную, проходящую через конкретную точку на координатной плоскости.

    Надеюсь, этот урок хоть немного поможет вам разобраться в этой сложной теме. В любом случае, именно на первообразных строятся неопределенные и неопределенные интегралы, поэтому считать их совершенно необходимо. На этом у меня все. До новых встреч!



    
    Top