В чем выражается скорость химической реакции. Химическая кинетика. Скорость химических реакций

Скорость реакции определяется изменением молярной концентрации одного из реагирующих веществ:

V = ± ((С 2 - С 1) / (t 2 - t 1)) = ± (DС / Dt)

Где С 1 и С 2 - молярные концентрации веществ в моменты времени t 1 и t 2 соответственно (знак (+) - если скорость определяется по продукту реакции, знак (-) - по исходному веществу).

Реакции происходят при столкновении молекул реагирующих веществ. Ее скорость определяется количеством столкновений и вероятностью того, что они приведут к превращению. Число столкновений определяется концентрациями реагирующих веществ, а вероятность реакции - энергией сталкивающихся молекул.
Факторы, влияющие на скорость химических реакций.
1. Природа реагирующих веществ. Большую роль играет характер химических связей и строение молекул реагентов. Реакции протекают в направлении разрушения менее прочных связей и образования веществ с более прочными связями. Так, для разрыва связей в молекулах H 2 и N 2 требуются высокие энергии; такие молекулы мало реакционноспособны. Для разрыва связей в сильнополярных молекулах (HCl, H 2 O) требуется меньше энергии, и скорость реакции значительно выше. Реакции между ионами в растворах электролитов протекают практически мгновенно.
Примеры
Фтор с водородом реагирует со взрывом при комнатной температуре, бром с водородом взаимодействует медленно и при нагревании.
Оксид кальция вступает в реакцию с водой энергично, с выделением тепла; оксид меди - не реагирует.

2. Концентрация. С увеличением концентрации (числа частиц в единице объема) чаще происходят столкновения молекул реагирующих веществ - скорость реакции возрастает.
Закон действующих масс (К. Гульдберг, П.Вааге, 1867г.)
Скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ.

AA + bB + . . . ® . . .

  • [A] a [B] b . . .

Константа скорости реакции k зависит от природы реагирующих веществ, температуры и катализатора, но не зависит от значения концентраций реагентов.
Физический смысл константы скорости заключается в том, что она равна скорости реакции при единичных концентрациях реагирующих веществ.
Для гетерогенных реакций концентрация твердой фазы в выражение скорости реакции не входит.

3. Температура. При повышении температуры на каждые 10°C скорость реакции возрастает в 2-4 раза (Правило Вант-Гоффа). При увеличении температуры от t 1 до t 2 изменение скорости реакции можно рассчитать по формуле:



(t 2 - t 1) / 10
Vt 2 / Vt 1 = g

(где Vt 2 и Vt 1 - скорости реакции при температурах t 2 и t 1 соответственно; g- температурный коэффициент данной реакции).
Правило Вант-Гоффа применимо только в узком интервале температур. Более точным является уравнение Аррениуса:

  • e -Ea/RT

где
A - постоянная, зависящая от природы реагирующих веществ;
R - универсальная газовая постоянная ;

Ea - энергия активации, т.е. энергия, которой должны обладать сталкивающиеся молекулы, чтобы столкновение привело к химическому превращению.
Энергетическая диаграмма химической реакции.

Экзотермическая реакция Эндотермическая реакция

А - реагенты, В - активированный комплекс (переходное состояние), С - продукты.
Чем больше энергия активации Ea, тем сильнее возрастает скорость реакции при увеличении температуры.

4. Поверхность соприкосновения реагирующих веществ. Для гетерогенных систем (когда вещества находятся в разных агрегатных состояниях), чем больше поверхность соприкосновения, тем быстрее протекает реакция. Поверхность твердых веществ может быть увеличена путем их измельчения, а для растворимых веществ - путем их растворения.

5. Катализ. Вещества, которые участвуют в реакциях и увеличивают ее скорость, оставаясь к концу реакции неизменными, называются катализаторами . Механизм действия катализаторов связан с уменьшением энергии активации реакции за счет образования промежуточных соединений. При гомогенном катализе реагенты и катализатор составляют одну фазу (находятся в одном агрегатном состоянии), при гетерогенном катализе - разные фазы (находятся в различных агрегатных состояниях). Резко замедлить протекание нежелательных химических процессов в ряде случаев можно добавляя в реакционную среду ингибиторы (явление "отрицательного катализа ").

Химические методы

Физические методы

Методы измерения скорости реакции

В приведенном выше примере скорость реакции между карбонатом кальция и кислотой измеряли путем изучения зависимости объема выделившегося газа от времени. Опытные данные о скоростях реакций можно получать измерением других величин.

Если в ходе реакции изменяется общее количество газообразных веществ, то за ее протеканием можно наблюдать, измеряя давление газа при постоянном объеме. В тех случаях, когда одно из исходных веществ или один из продуктов реакции окрашены, за ходом реакции можно следить, наблюдая изменение окраски раствора. Другим оптическим методом является измерение вращения плоскости поляризации света (если исходные вещества и продукты реакции обладают различной вращающей способностью).

Некоторые реакции сопровождаются изменением числа ионов в растворе. В таких случаях скорость реакции можно изучать путем измерения электрической проводимости раствора. В следующей главе будут рассмотрены некоторые другие электрохимические методы, которые могут быть использованы для измерения скоростей реакций.

За ходом реакции можно следить, измеряя во времени концентрацию одного из участников реакции с помощью разнообразных методов химического анализа. Реакцию проводят в термостатированном сосуде. Через определенные промежутки времени из сосуда отбирают пробу раствора (или газа) и определяют концентрацию одного из компонентов. Для получения надежных результатов важно, чтобы в пробе, отобранной для анализа, реакция не происходила. Это достигается путем химического связывания одного из реагентов, резким охлаждением или разбавлением раствора.

Экспериментальные исследования показывают, что скорость реакции зависит от нескольких факторов. Рассмотрим влияние этих факторов вначале на качественном уровне.

1.Природа реагирующих веществ. Из лабораторной практики мы знаем, что нейтрализация кислоты основанием

Н + + ОН – ® Н 2 О

взаимодействие солей с образованием малорастворимого соединения

Ag + + Cl – ® AgCl

и другие реакции в растворах электролитов происходят очень быстро. Время, необходимое для завершения таких реакций, измеряется в миллисекундах и даже в микросекундах. Это вполне понятно, т.к. сущность таких реакций состоит в сближении и соединении заряженных частиц с зарядами противоположного знака.

В противоположность ионным реакциям взаимодействие между ковалентно связанными молекулами обычно протекает гораздо медленнее. Ведь в ходе реакции между такими частицами должен произойти разрыв связей в молекулах исходных веществ. Для этого сталкивающиеся молекулы должны обладать определенным запасом энергии. Кроме того,если молекулы достаточно сложны, для того, чтобы произошла между ними реакция, они должны быть определенным образом ориентированы в пространстве.

2. Концентрация реагирующих веществ . Скорость химической реакции, при прочих равных условиях, зависит от числа столкновений реагирующих частиц в единицу времени. Вероятность столкновений зависит от количества частиц в единице объема, т.е. от концентрации. Поэтому скорость реакции увеличивается с повышением концентрации.

3. Физическое состояние веществ . В гомогенных системах скорость реакции зависит от числа столкновений частиц в объеме раствора (или газа). В гетерогенных системах химическое взаимодействие происходит на поверхности раздела фаз . Увеличение площади поверхности твердого вещества при его измельчении облегчает доступ реагирующих частиц к частицам твердого вещества, что приводит к существенному ускорению реакции.

4. Температура оказывает существенное влияние на скорость разнообразных химических и биологических процессов. При увеличении температуры повышается кинетическая энергия частиц, а, следовательно, увеличивается доля частиц, энергия которых достаточна для химического взаимодействия.

5. Стерический фактор характеризует необходимость взаимной ориентации реагирующих частиц. Чем сложнее молекулы, тем меньше вероятность их должной ориентации, тем меньше эффективность столкновений.

6. Наличие катализаторов . Катализаторами называются вещества, в присутствии которых изменяется скорость химической реакции. Вводимые в реакционную систему в небольших количествах и остающиеся после реакции неизменившимися, они способны чрезвычайно менять скорость процесса.

Основные факторы, от которых зависит скорость реакции, будут подробнее рассмотрены ниже.

Под скоростью химической реакции понимают изменение концентрации одного из реагирующих веществ в единицу времени при неизменном объеме системы.

Обычно концентрацию выражают в моль/л, а время – в секундах или минутах. Если, например, исходная концентрация одного из реагирующих веществ составляла 1 моль/л, а через 4 с от начала реакции она стала 0,6 моль/л, то средняя скорость реакции будет равна (1-0,6)/4=0,1 моль/(л*с).

Средняя скорость реакции вычисляется по формуле:

Скорость химической реакции зависит от:

    Природы реагирующих веществ.

Вещества с полярной связью в растворах взаимодействуют быстрей, это объясняется тем, что такие вещества в растворах образуются ионы, которые легко взаимодействуют друг с другом.

Вещества с неполярной и малополярной ковалентной связью реагируют с различной скоростью, это зависит от их химической активности.

H 2 + F 2 = 2HF (идёт очень быстро со взрывом при комнатной температуре)

H 2 + Br 2 = 2HBr (идет медленно, даже при нагревании)

    Величины поверхностного соприкосновения реагирующих веществ (для гетерогенных)

    Концентрации реагирующих веществ

Скорость реакции прямопропорциональна произведению концентрации реагирующих веществ, возведенных в степень их стехиометрических коэффициентов.

    Температуры

Зависимость скорости реакции от температуры определяется правилом Вант-Гоффа:

при повышении температуры на каждые 10 0 скорость большинства реакций увеличивается в 2-4 раза.

    Присутствия катализатора

Катализаторами называются вещества, изменяющие скорость химической реакций.

Явление изменения скорости реакции в присутствии катализатора называется катализом.

    Давления

При увеличение давления скорость реакции повышается (для гомогенных)

Вопрос№26. Закон действия масс. Константа скорости. Энергия активации.

Закон действия масс.

скорость, с которой вещества реагируют друг с другом, зависит от их концентрации

Константа скорости.

коэффициент пропорциональности в кинетическом уравнении химической реакции, выражающий зависимость скорости реакции от концентрации

Константа скорости зависит от природы реагирующих веществ и от температуры, но не зависит от их концентраций.

Энергия активации.

энергия, которую надо сообщить молекулам (частицам) реагирующих веществ, чтобы превратить их в активные

Энергия активации зависит от природы реагирующих веществ и изменяется в присутствии катализатора.

Повышение концентрации увеличивается общее число молекул, а соответственно активных частиц.

Вопрос№27. Обратимые и необратимые реакции. Химическое равновесие, константа равновесия. Принцип Ле Шателье.

Реакции, которые протекают только в одном направлении и завершаются полным превращением исходных веществ в конечные, называются необратимыми.

Обратимыми называются такие реакции, которые одновременно протекают в двух взаимно противоположных направлениях.

В уравнениях обратимых реакций между левой и правой частью ставят две стрелки, направленные в противоположные стороны. Примером такой реакции может служить синтез аммиака их водорода и азота:

3H 2 + N 2 = 2NH 3

Необратимыми называются такие реакции, при протекании которых:

    Образующиеся продукты выпадают в осадок, или выделяются в виде газа, например:

BaCl 2 + H 2 SO 4 = BaSO 4 + 2HCl

Na 2 CO 3 + 2HCl = 2NaCl + CO 2 + H 2 O

    Образование воды:

HCl + NaOH = H 2 O + NaCl

Обратимые реакции не доходят до конца и заканчиваются установлением химического равновесия .

Химическое равновесие – это состояние системы реагирующих веществ, при котором скорости прямой и обратной реакции равны между собой.

На состояние химического равновесия оказывает влияние концентрации реагирующих веществ, температура, а для газов – и давление. При изменении одного из этих параметров, химическое равновесия нарушается.

Константа равновесия.

Важнейший параметр, характеризующий обратимую химическую реакцию – константа равновесия К. Если записать для рассмотренной обратимой реакции A + D C + D условие равенства скоростей прямой и обратной реакции в состоянии равновесия – k1[A]равн[B]равн = k2[C]равн[D]равн, откуда [C]равн[D]равн/[A]равн[B]равн = k1/k2 = К, то величина К называется константой равновесия химической реакции.

Итак, при равновесии отношение концентрации продуктов реакции к произведению концентрации реагентов постоянно, если постоянна температура (константы скорости k1 и k2 и, следовательно, константа равновесия К зависят от температуры, но не зависят от концентрации реагентов). Если в реакции участвуют несколько молекул исходных веществ и образуется несколько молекул продукта (или продуктов), концентрации веществ в выражении для константы равновесия возводятся в степени, соответствующие их стехиометрическим коэффициентам. Так для реакции 3H2 + N2 2NH3 выражение для константы равновесия записывается в виде K = 2 равн/3равнравн. Описанный способ вывода константы равновесия, основанный на скоростях прямой и обратной реакций, в общем случае использовать нельзя, так как для сложных реакций зависимость скорости от концентрации обычно не выражается простым уравнением или вообще неизвестна. Тем не менее, в термодинамике доказывается, что конечная формула для константы равновесия оказывается верной.

Для газообразных соединений вместо концентраций при записи константы равновесия можно использовать давление; очевидно, численное значение константы при этом может измениться, если число газообразных молекул в правой и левой частях уравнения не одинаковы.

Пинцип Ле Шателье.

если на систему, находящуюся в равновесии, производится какое-либо внешнее воздействие, то равновесие смещается в сторону той реакции, которая противодействует этому воздействию.

На химическое равновесие влияет:

    Изменение температуры. При повышении температуры равновесие смещается в сторону эндотермической реакции. При понижении температуры равновесие смещается в сторону экзотермической реакции.

    Изменение давления. При повышении давления равновесие смещается в сторону уменьшения числа молекул. При понижении давления равновесие смещается в сторону увеличения числа молекул.

Кинетика – наука о скоростях химических реакций.

Скорость химической реакции – число элементарных актов химического взаимодействия, протекающих в единицу времени в единицу объема (гомогенные) или на единице поверхности (гетерогенные).

Истинная скорость реакции:


2. Факторы, влияющие на скорость химической реакции

Для гомогенных, гетерогенных реакций:

1) концентрация реагирующих веществ;

2) температура;

3) катализатор;

4) ингибитор.

Только для гетерогенных:

1) скорость подвода реагирующих веществ к поверхности раздела фаз;

2) площадь поверхности.

Главный фактор – природа реагирующих веществ – характер связи между атомами в молекулах реагентов.

NO 2 – оксид азота (IV) – лисий хвост, СО – угарный газ, монооксид углерода.

Если их окислить кислородом, то в первом случае реакция пойдет мгновенно, стоит приоткрыть пробку сосуда, во втором случае реакция растянута во времени.

Концентрация реагирующих веществ будет рассмотрена ниже.

Голубая опалесценция свидетельствует о моменте выпадения серы, чем выше концентрация, тем скорость выше.


Рис. 10


Чем больше концентрации Na 2 S 2 O 3 , тем меньше времени идет реакция. На графике (рис. 10) изображена прямо пропорциональная зависимость. Количественная зависимость скорости реакции от концент-рации реагирующих веществ выражается ЗДМ (законом действующих масс), который гласит: скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ.

Итак, основным законом кинетики является установленный опытным путем закон: скорость реакции пропорциональна концентрации реагирующих веществ, пример: (т.е. для реакции)

Для этой реакции Н 2 + J 2 = 2НJ – скорость можно выразить через изменение концентрации любого из веществ. Если реакция протекает слева направо, то концентрация Н 2 и J 2 будет уменьшаться, концентрация НJ – увеличиваться по ходу реакции. Для мгновенной скорости реакций можно записать выражение:

квадратными скобками обозначается концентрация.

Физический смысл k– молекулы находятся в непрерывном движении, сталкиваются, разлетаются, ударяются о стенки сосуда. Для того, чтобы произошла химическая реакция образования НJ, молекулам Н 2 и J 2 надо столкнуться. Число же таких столкновений будет тем больше, чем больше молекул H 2 и J 2 содержится в объеме, т. е. тем больше будут величины [Н 2 ] и . Но молекулы движутся с разными скоростями, и суммарная кинетическая энергия двух сталкивающихся молекул будет различной. Если столкнутся самые быстрые молекулы Н 2 и J 2 , энергия их может быть такой большой, что молекулы разобьются на атомы йода и водорода, разлетающиеся и взаимодействующие затем с другими молекулами Н 2 + J 2 > 2H+2J, далее будет H + J 2 > HJ + J. Если энергия сталкивающихся молекул меньше, но достаточно велика для ослабления связей H – H и J – J, произойдет реакция образования йодоводорода:

У большинства же сталкивающихся молекул энергия меньше необходимой для ослабления связей в Н 2 и J 2 . Такие молекулы «тихо» столкнутся и также «тихо» разойдутся, оставшись тем, чем они были, Н 2 и J 2 . Таким образом, не все, а лишь часть столкновений приводит к химической реакции. Коэффициент пропорциональности (k) показывает число результативных, приводящих к реакции соударений при концентрациях [Н 2 ] = = 1моль. Величина k– const скорости . Как же скорость может быть постоянной? Да, скоростью равномерного прямолинейного движения называют постоянную векторную величину, равную отношению перемещения тела за любой промежуток времени к значению этого промежутка. Но молекулы движутся хаотически, тогда как же может быть скорость – const? Но постоянная скорость может быть только при постоянной температуре. С ростом температуры увеличивается доля быстрых молекул, столкновения которых приводят к реакции, т. е. увеличивается константа скорости. Но увеличение константы скорости не безгранично. При какой-то температуре энергия молекул станет столь большой, что практически все соударения реагентов будут результативными. При столкновении двух быстрых молекул будет происходить обратная реакция.

Настанет такой момент, когда скорости образования 2НJ из Н 2 и J 2 и разложения будут равны, но это уже химическое равновесие. Зависимость скорости реакции от концентрации реагирующих веществ можно проследить, пользуясь традиционной реакцией взаимодействия раствора тиосульфата натрия с раствором серной кислоты.

Na 2 S 2 O 3 + H 2 SO 4 = Na 2 SO 4 + H 2 S 2 O 3 , (1)

H 2 S 2 O 3 = Sv+H 2 O+SO 2 ^. (2)

Реакция (1) протекает практически мгновенно. Скорость реакции (2) зависит при постоянной температуре от концентрации реагирующего вещества H 2 S 2 O 3 . Именно эту реакцию мы наблюдали – в этом случае скорость измеряется временем от начала сливания растворов до появления опалесценции. В статье Л. М. Кузнецовой описана реакция взаимодействия тиосульфата натрия с соляной кислотой. Она пишет, что при сливании растворов происходит опалесценция (помутнение). Но данное утверждение Л. М. Кузнецовой ошибочно так как опалесценция и помутнение – это разные вещи. Опалесценция (от опал и латинского escentia – суффикс, означающий слабое действие) – рассеяние света мутными средами, обусловленное их оптической неоднородностью. Рассеяние света – отклонение световых лучей, распространяющихся в среде во все стороны от первоначального направления. Коллоидные частицы способны рассеивать свет (эффект Тиндаля – Фарадея) – этим объясняется опалесценция, легкая мутноватость коллоидного раствора. При проведении этого опыта надо учитывать голубую опалесценцию, а затем коагуляцию коллоидной суспензии серы. Одинаковую плотность суспензии отмечают по видимому исчезновению какого-либо рисунка (например, сетки на дне стаканчика), наблюдаемого сверху через слой раствора. Время отсчитывают по секундомеру с момента сливания.

Растворы Na 2 S 2 O 3 x 5H 2 O и H 2 SO 4 .

Первый готовят путем растворения 7,5 г соли в 100 мл H 2 O, что соответствует 0,3 М концентрации. Для приготовления раствора H 2 SO 4 той же концентрации отмерить надо 1,8 мл H 2 SO 4 (к), ? = = 1,84 г/см 3 и растворить ее в 120 мл H 2 O. Приготовленный раствор Na 2 S 2 O 3 разлить в три стакана: в первый – 60 мл, во второй – 30 мл, в третий – 10 мл. Во второй стакан добавить 30 мл H 2 O дистиллированной, а в третий – 50 мл. Таким образом, во всех трех стаканах окажется по 60 мл жидкости, но в первом концентрация соли условно = 1, во втором – Ѕ, а в третьем – 1/6. После того, как будут подготовлены растворы, в первый стакан с раствором соли прилейте 60 мл раствора H 2 SO 4 и включите секундомер, и т. д. Учитывая, что скорость реакции падает с разбавлением раствора Na 2 S 2 O 3 , ее можно определить как величину, обратно пропорциональную времени v = 1/? и построить график, отложив на оси абсцисс концентрацию, а на оси ординат – скорость реакции. Из этого вывод – скорость реакции зависит от концентрации веществ. Полученные данные занесены в таблицу 3. Можно этот опыт выполнить с помощью бюреток, но это требует от выполняющего большой практики, потому что график бывает неправильным.


Таблица 3

Скорость и время реакции



Подтверждается закон Гульдберга-Вааге – профессора химии Гульдерга и молодого ученого Вааге).

Рассмотрим следующий фактор – температуру.

При увеличении температуры скорость большинства химических реакций повышается. Эта зависимость описана правилом Вант-Гоффа: «При повышении температуры на каждые 10 °C скорость химических реакций увеличивается в 2 – 4 раза».

где ? – температурный коэффициент, показывающий, во сколько раз увеличивается скорость реакции при повышении температуры на 10 °C;

v 1 – скорость реакции при температуре t 1 ;

v 2 – скорость реакции при температуре t 2 .

Например, реакция при 50 °С протекает за две минуты, за сколько времени закончится процесс при 70 °С, если температурный коэффициент ? = 2?

t 1 = 120 с = 2 мин; t 1 = 50 °С; t 2 = 70 °С.

Даже небольшое повышение температуры вызывает резкое увеличение скорости реакции активных соударений молекулы. Согласно теории активации, в процессе участвуют только те молекулы, энергия которых больше средней энергии молекул на определенную величину. Эта избыточная энергия – энергия активации. Физический смысл ее – это та энергия, которая необходима для активного столкновения молекул (перестройки орбиталей). Число активных частиц, а следовательно, скорость реакции возрастает с температурой по экспоненциальному закону, согласно уравнению Аррениуса, отражающему зависимость константы скорости от температуры

где А – коэффициент пропорциональности Аррениуса;

k– постоянная Больцмана;

Е А – энергия активации;

R – газовая постоянная;

Т– температура.

Катализатор – вещество, ускоряющее скорость реакции, которое само при этом не расходуется.

Катализ – явление изменения скорости реакции в присутствии катализатора. Различают гомогенный и гетерогенный катализ. Гомогенный – если реагенты и катализатор находятся в одном агрегатном состоянии. Гетерогенный – если реагенты и катализатор в различных агрегатных состояниях. Про катализ см. отдельно (дальше).

Ингибитор – вещество, замедляющее скорость реакции.

Следующий фактор – площадь поверхности. Чем больше поверхность реагирующего вещества, тем больше скорость. Рассмотрим на примере влияние степени дисперсности на скорость реакции.

CaCO 3 – мрамор. Плиточный мрамор опустим в соляную кислоту HCl, подождем пять минут, он растворится полностью.

Порошкообразный мрамор – с ним проделаем ту же процедуру, он растворился через тридцать секунд.

Уравнение обоих процессов одинаково.

CaCO 3 (тв) + HCl(г) = CaCl 2 (тв) + H 2 O(ж) + CO 2 (г) ^.

Итак, при добавлении порошкообразного мрамора время меньше, чем при добавлении плиточного мрамора, при одинаковой массе.

С увеличением поверхности раздела фаз скорость гетерогенных реакций увеличивается.

Химическая реакция - это превращение одних веществ в другие.

К какому бы типу ни относились химические реакции, они осуществляются с различной скоростью. Например, геохимические превращения в недрах Земли (образование кристаллогидратов, гидролиз солей, синтез или разложение минералов) протекают тысячи, миллионы лет. А такие реакции, как горение пороха, водорода, селитр, бертолетовой соли происходят в течение долей секунд.

Под скоростью химической реакции понимается изменение количеств реагирующих веществ (или продуктов реакции) в единицу времени. Чаще всего используется понятие средней скорости реакции (Δc p) в интервале времени.

v ср = ± ∆C/∆t

Для продуктов ∆С > 0, для исходных веществ -∆С < 0. Наиболее употребляемая единица измерения - моль на литр в секунду (моль/л*с).

Скорость каждой химической реакции зависит от многих факторов: от природы реагирующих веществ, концентрации реагирующих веществ, изменении температуры реакции, степени измельчённости реагирующих веществ, изменении давления, введения в среду реакци катализатора.

Природа реагирующих веществ существенно влияет на скорость химической реакции. В качестве примера рассмотрим взаимодействие некоторых металлов с постоянным компонентом - водой. Определим металлы: Na, Са, Аl ,Аu . Натрий реагирует с водой при обычной температуре очень бурно, с выделением большого количества теплоты.

2Na + 2H 2 O = 2NaOH + H 2 + Q;

Менее энергично при обычной температуре реагирует с водой кальций:

Са + 2Н 2 О = Са(ОН) 2 + H 2 + Q;

Алюминий реагирует с водой уже при повышенной температуре:

2Аl + 6Н 2 О = 2Аl(ОН)з + ЗН 2 - Q;

А золото - один из неактивных металлов, с водой ни при обычной, ни при повышенной температуре не реагирует.

Скорость химической реакции находится в прямой зависимости от концентрации реагирующих веществ . Так, для реакции:

C 2 H 4 + 3O 2 = 2CO 2 + 2Н 2 О;

Выражение скорости реакции имеет вид:

v = k**[О 2 ] 3 ;

Где k - константа скорости химической реакции, численно равная скорости данной реакции при условии, что концентрации реагирующих компонентов равны 1 г/моль; величины [С 2 Н 4 ] и [О 2 ] 3 соответствуют концентрациям реагирующих веществ, возведенные в степень их стехиометрических коэффициентов. Чем больше концентрация [С 2 Н 4 ] или [О 2 ], тем больше в единицу времени соударений молекул данных веществ, следовательно больше скорость химической реакции.

Скорости химических реакций, как правило, находятся также в прямой зависимости от температуры реакции . Естественно, при увеличении температуры кинетическая энергия молекул возрастает, что так же приводит к большим столкновением молекул в единицу времени. Многочисленные опыты показали, что при изменении температуры на каждые 10 градусов скорость реакции изменяется в 2-4 раза (правило Вант-Гоффа):

где V T 2 - скорость химической реакции при Т 2 ; V ti - скорость химической реакции при T 1 ; g- температурный коэффициент скорости реакции.

Влияние степени измельчённости веществ на скорость реакции так же находится в прямой зависимости. Чем в более мелком состоянии находятся частицы реагирующих веществ, тем в большей степени они соприкасаются друг с другом в единицу времени тем больше скорость химической реакции. Поэтому, как правило, реакции между газообразными веществами или растворами протекают быстрее, чем в твердом состоянии.

Изменение давления оказывает влияние на скорость реакции между веществами, находящимися в газообразном состоянии. Находясь в замкнутом объеме при постоянной температуре реакция протекает со скоростью V 1. Если в данной системе мы повысим давление (следовательно, уменьшим объем), концентрации реагирующих веществ возрастут, увеличится соударение их молекул в единицу времени, скорость реакции повысится до V 2 (v 2 > v 1).

Катализаторы - это вещества, изменяющие скорость химической реакции, но остающиеся неизменными после того, как химическая реакция заканчивается. Влияние катализаторов на скорость реакции называется катализом, Катализаторы могут как ускорять химико-динамический процесс, так и замедлять его. Когда взаимодействующие вещества и катализатор находятся в одном агрегатном состоянии, то говорят о гомогенном катализе, а при гетерогенном катализе реагирующие вещества и катализатор находятся в разных агрегатных состояниях. Катализатор с реагентами образует промежуточный комплекс. Например, для реакции:

Катализатор (К) образует комплекс с А или В - АК, ВК, который высвобождает К при взаимодействии со свободной частицей А или В:

АК + В = АВ + К

ВК + А = ВА + К;

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.




Top