Анализ безопасности и экологичности изделий из пвх. Курсовая работа: Производство поливинилхлорида и его основные свойства Производство окон инструкции по технике безопасности

Раздражающий запах винилхлорида проявляется лишь при высоких концентрациях в воздухе, поэтому не служит достаточным предостережением о его присутствии. При высоких концентрациях наркотическое действие винилхлорида проявляется очень быстро, поэтому человек часто не замечает начальных предостерегающих симптомов, так как потеря сознания и беспомощность могут наступить раньше, чем будет обнаружено присутствие винилхлорида.

Небольшое количество винилхлорида в воздухе, появляющееся в результате утечки газа, не может вызвать сколько-нибудь сильного отравления. Оно более опасно из-за возможности взрыва, так как нижний предел взрывоопасной концентрации его в воздухе невелик (4,0 — 21,7 об. %).

Поливинилхлорид с физиологической точки зрения безвреден. При нагревании его выше 140° С выделяется хлороводород; в процессе переработки поливинилхлорида в изделия улетучиваются пластификаторы, поэтому перерабатывающие машины (вальцы, каландры) необходимо снабжать вакуумзонтом для удаления летучих. Поливинилхлорид не поддерживает горения (самозатухающий). Пластифицированные изделия горят с большим количеством дыма. При неполном сгорании поливинилхлорида выделяются ядовитые газы: НС1, СО, хлор, фосген и др. Работы проводить в вытяжном шкафу с хорошим обменом воздуха.

Винилиденхлорид обладает сравнительно слабым физиологическим действием. Пределом раздражающего действия на слизистые оболочки является концентрация около 0,1 мг/л. Запах винилиденхлорида ощущается при содержании его в воздухе 0,2 мг/л. По сравнению с дихлорэтаном винилиденхлорид оказывает более слабое наркотическое влияние на организм. Смертельная концентрация паров винилиденхлорида при испытании на мышах составляет 15 мг/л, что примерно равно токсичности хлорбензола. При нанесении мономера на кожу кроликов наблюдалось некоторое ее раздражение.

Винилиденхлорид сильно летуч и вдыхание его паров при открытом испарении мономера вызывает острое отравление, поэтому работы с ним следует проводить в вытяжном шкафу.

Так как винилиденхлорид — легковоспламеняющееся вещество с очень низкой температурой вспышки (— 11°С), то при работе с ним необходимо избегать открытого огня. Нагревание винилиденхлорида при перегонке следует проводить в предварительно нагретой водяной бане, от которой отнята горелка, или в бане, нагреваемой электрической плиткой. Ни в коем случае не допускается непосредственный нагрев вниилиденхлорида пламенем горелки.

Пары винилиденхлорида образуют с воздухом взрывчатую смесь. Взрывоопасные концентрации лежат в пределах от 7 до 16 об. %.

При хранении чистого мономера без ингибиторов и в присутствии кислорода воздуха наряду с полимерным продуктом образуется небольшое количество пероксидных соединений, которые в сухом состоянии под действием кислорода воздуха способны разлагаться, иногда со взрывом. Поэтому мономерный винилиденхлорид следует хранить с добавлением ингибиторов (гидрохинона, фенола, спиртов, аминов), которые значительно замедляют образование пероксидных соединений и последующую полимеризацию, а так же предохраняют мономер от воздействия воздуха. Герметичную тару, предназначенную для хранения мономера, необходимо предварительно продуть инертным газом (азотом, диоксидом углерода). Поливинилиденхлорид не горюч.

Введение

1. Исходные вещества

1.2 Химические свойства ХВ

2.3 Гель-эффект

3. Технология получения ПВХ

4. Свойства ПВХ

4.2 Химические свойства ПВХ

Введение

Поливинилхлорид (ПВХ) - термопластичный материал, получаемый полимеризацией винилхлорида, хлорзамещенного этилена.

Занимает одно из ведущих мест среди полимерных продуктов, выпускаемой мировой промышленностью. На базе этого полимера получают свыше 3000 видов материалов и изделий, которые используются для самых разнообразных целей и завоевывают с каждым годом все новые области применения.

Впервые хлористый винил был получен в 1935 г. Реньо обработкой дихлорэтана спиртовым раствором щелочи, хотя полагают, что это. Собственно, являлось повторением более ранних работ Либиха. В 1912 году был выдан первый патент на промышленное использование винил-галогенидов для получения полимеров. Однако товарным продуктом ПВХ стал лишь в 1935 г. Полимер требовал специфического подхода к его переработке и преодоления ряда сложных задач, связанных с длительной эксплуатацией в естественных условиях материалов или изделий на его основе, что в то время казалось непреодолимым препятствием. Одна из основных проблем, с которой сталкиваются при работе с ПВХ, − малая стабильность его макромолекул.

В процессе переработки, хранения и эксплуатации полимер подвергается действию многочисленных химических, биологических и физических факторов: тепла, света, кислорода, озона, влаги, агрессивных химических и биохимических агентов, механических нагрузок, которые могут приводить к существенному необратимому изменению физических и химических свойств полимера, к его старению, т.е. к потере комплекса полезных эксплуатационных свойств, и разрушению. Тем не менее, исключительно высокая экономическая эффективность производства и применение ПВХ в различных отраслях промышленности обусловила быстрый рост его выпуска во многих странах мира благодаря доступности и низкой стоимости исходного сырья, ценным физическим и физико-химическим свойством материалов и изделий из ПВХ.

При изготовлении материалов и изделий из ПВХ полимер сочетают с различными ингредиентами, выполняющих роль пластификаторов, стабилизаторов, лубрикантов (смазок), наполнителей, красящих веществ которые придают материалам или изделиям из ПВХ специфические свойства.

Из ПВХ получают как пластифицированные (мягкие и полужесткие), так и непластифицированные (жесткие) изделия.

Потребление пластифицированного ПВХ - изоляция и оболочки электропроводов и кабелей, мягкие листы и пленки, с/х назначения, упаковочные, облицовочные, линолеум, для получения искусственной кожи, гибкие трубы и шланги и тд.

Непластифицированный ПВХ находит применение в производстве жестких труб и фитингов (канализация, газо - и водоснабжение), листов и жестких пленок, в том числе светопрозрачных, декоративных, конструкционных, вытяжных шкафов, электротехнических изделий, пенопласта (звуко-, теплоизоляция, набивочный материал), емкости (банки, бутылки, флаконы), панели, профили, волокна и тд. Большое значение имеет использование ПВХ для предохранения трубопроводов химической аппаратуры, цистерн или резервуаров от воздействия хлора, соляной и серной кислот и других агрессивных сред.

Уже было сказано, что ПВХ как любой другой полимер, при хранении, переработке и эксплуатации подвержен различным видам старения. С этим наблюдают разнообразные химические превращения ПВХ. Большую роль в развитии процессов старения могут играть внутренние факторы - строение и структура макроцепей, причем часто можно наблюдать изменение структуры ПВХ за счет переориентации молекул, уменьшения внутренних напряжений, разрыва и сшивки полимерных цепей. Возможно так же испарение летучих компонентов, экстракция пластификаторов, поглощение воды, растворение, набухание и т.д.

Все изложенное выше предопределяет первостепенный интерес не только к вопросам совершенствования методов и технологии синтеза мономера и ПВХ. Разработки научных снов полимеризации хлористого винила и т.п., но и к вопросам стабилизации, принципом составления оптимальных рецептур, переработки ПВХ с целью обеспечения долговечности материалов или изделий из этого материала.

1. Исходные вещества

1.1 Характеристика исходных продуктов

Основным сырьем для производства ПВХ служит винилхлорид (ВХ). Он является вторым по спросу и использованию после этилена мономером.

ВХ при комнатной температуре и атмосферном давлении представляет собой бесцветный газ с эфирным запахом, температура кипения равна - 13, 9ºС и плотность 970 кг/м 3 . ВХ растворяется в ацетоне, этиловом спирте, ароматических и алифатических углеводородах, но в воде практически не растворим.

Вещество является чрезвычайно огнеопасным, его смеси с воздухом взрывоопасны; при горении выделяет раздражающие, токсичные и коррозионно-активные вещества, среди которых, в частности, обнаруживается крайне ядовитый фосген.

Температура вспышки: −78°С, температура самовоспламенения: 472°С. Пределы воспламенения в воздухе: 3,6-33%. Гашение пламени при горении винилхлорида производят только после остановки подачи газа, при этом используют воду на максимально возможном от очага возгорания расстоянии, создавая плотную туманоподобную завесу, а также охлаждая горячие поверхности.

ВХ оказывает комплексное токсическое воздействие на организм человека, вызывая поражение ЦНС, костной системы, системное поражение соединительной ткани, мозга, сердца. Поражает печень, вызывая ангиосаркому. Вызывает иммунные изменения и опухоли, оказывает канцерогенное, мутагенное и тератогенное действие. Многие исследования сообщают, что воздействие винилхлорида на человека вызывает рак в различных тканях и органах, включая печень (опухоли помимо ангиосаркомы), мозг, лёгкие, лимфатическую и гематопоэтическую систему (органы и ткани, вовлечённые в кровообразование). При этом можно отметить, что употребление этанола только усиливает канцерогенный эффект винилхлорида.

ХВ может быть получен различными методами:

Гидрохлорированием ацетилена в присутствии катализатора.

Пиролизом дихлорэтана или дегидрохлорированием щелочью в спиртовом растворе.

Высокотемпературным хлорированием этилена.

Оксихлорированием этилена.

Получение ХВ это в настоящее время практически единственный пример реального внедрения метода окислительного хлорирования углеводородов.

На первой стадии образуется 1,2 - дихлорэтан.

Для использования HCl его отправляют на стадию окислительного хлорирования этилена для получения ПВХ.

ВХ хранится вдали от источников тепла и огня в жидком виде при температуре −14÷22°C в больших сферических металлических заземлённых ёмкостях с небольшой добавкой стабилизатора (например: гидрохинон). Ёмкости должны быть оснащены самозапорными клапанами, устройствами контроля давления и искрогасителями. Контейнер с веществом должен находиться в хорошо проветриваемых условиях при внешней температуре ниже 50°C. Необходимо избегать контакта с медью, любыми источниками огня или тепла, окислителями, каустической содой и активными металлами. Стабилизированный хлористый винил транспортируется в жидком виде в охлаждаемых стальных цистернах, которые предварительно должны быть тщательно высушены и продуты азотом.

1.2 Химические свойства ХВ

Реакции с участием ХВ можно разделить на две группы. К первой группе относятся реакции с участием галогена, а ко второй группе те реакции которые идут по месту двойной связи.

Реакции с участием атома галогена.

Атом галогена в галогенопроизводных (галоген находится при атоме углерода при двойной связи) обладает низкой подвижностью, по этому такие реакции возможны с применением активных реагентов и катализаторов.

Отщепление галогеноводородов.

Отщепление HCl происходит под действием очень сильных оснований таких как металлический натрий в среде жидкого аммиака (NH 3 ).

Взаимодействие с бензолом.

Происходит в присутствие с катализаторов Фриделя - Кравца. Готовят суспензию AlCl 3 в бензоле и в нее вводят ХВ.

1-хлор-1-фенилэтан 1,1-дифенилэтан

Тот же результат может быть получен если образующийся HCl взаимодействует с хлористым винилом.

Образование виниловых эфиров.

Виниловые эфиры (ВЭ) сами по себе являются очень ценными мономерами, их общая формула

Они образуются при взаимодействии ХВ с окси соединениями (спирты, фенолы) либо с готовыми алкоголятами.

Со спиртами подобная реакция идет при Т=80 - 100 º С с высоким выходом эфира. Фенолы реагируют при значительно более высокой температуре. Подобным образом можно получить и сложные виниловые эфиры если винилировать карбоновые кислоты.

По схеме:

Реакции присоединения по двойной связи.

Присоединение галогенов.

Присоединение галогенов без водной среде, галоген присоединяется по месту двойной связи с образованием три галогенпроизводных.

1,1,2-трихлорэтан

В присутствии воды образуется галогенпроизводные альдегиды по той причине, что здесь действующим началом является хлорноватистая кислота образующиеся при растворении хлора в воде.


Присоединение галогеноводородов.

Галоген присоединяющийся ХВ в присутствии некоторого металла который образует с хлоридом водорода кислые кислоты.

Причем присоединение как правило согласовывается с правилом Морковникова.

Аналогично можно получить смешенные галогенпроизводные:

3) Присоединение оксигалогенпроизводных.

Особенно важной реакцией является реакция присоединения хлорметилового спирта, который образуется в результате присоединения HCl к формальдегиду.

Присоединение так же протекает по правилу Морковникова. Продуктами реакции являются хлорметиловые спирты.

3,3-дихлор-1-1пропан

Воздействие на окружающую среду и гигиенические нормативы.

В окружающей среде винилхлорид появляется исключительно вследствие его выбросов во время производства и переработки. По оценке специалистов, более 99% выброса ВХ остаётся в воздухе, где происходит его фотохимическая деградация под воздействием гидроксил - радикалов. При этом период его полураспада составляет 18 часов (по другим данным, это время составляет 2,2-2,7 дней).

С поверхности почвы ВХ быстро испаряется, однако может мигрировать в её глубь через грунтовые воды. В растениях и животных не накапливается. В почве и воде ВХ подвергается аэробной биодеградации (преимущественно до CO 2) под воздействием микроорганизмов, например, рода Микобактерий, биораспад в грунтовых водах может носить и анаэробный характер, причём его продуктами являются метан, этилен, углекислый газ и вода.

Основные гигиенические нормативы для винилхлорида в России:

ПДК максимально разовая в воздухе рабочей зоны: 5 мг/м³;

ПДК среднесменная в воздухе рабочей зоны = 1 мг/м³;

класс опасности для рабочей зоны: 1 (чрезвычайно опасное);

особенность токсического действия на организм: K (канцероген);

ПДК среднесуточная в атмосферном воздухе населённых мест = 0,01 мг/м³;

класс опасности для населённых пунктов: 1 (чрезвычайно опасное);

лимитирующий показатель воздействия: резорбтивный.

ПДК в воде = 0,005 мг/м³;

2. Физика - химия получения ПВХ. Методы получения

2.1 Методы получения поливинилхлорида

Промышленное производство ПВХ осуществляют тремя способами:

1) Суспензионная полимеризация по периодической схеме. Винилхлорид, содержащий 0,02-0,05% по массе инициатора (диазосоединения), интенсивно перемешивают в водной среде, содержащей 0,02-0,05% по массе защитного коллоида (метилгидроксипропилцеллюлоза, поливиниловый спирт). Смесь нагревают до 45-65 º C (в зависимости от требуемой молекулярной массы ПВХ) и заданную температуру поддерживают в узких пределах с целью получения однородного по молекулярному весу ПВХ. Полимеризация протекает в каплях ВХ, в ходе ее происходит некоторая агрегация частиц. В результате получают пористые гранулы ПВХ размером 100-300 мкм. После падения давления в реакторе (степень превращения винилхлорида около 85-90%) удаляют непрореагирующий мономер, поливинилхлорид отфильтровывают, сушат в токе горячего воздуха, просеивают через сита и расфасовывают. Полимеризацию проводят в реакторах большого объема (до 200м 3). Новые производства полностью автоматизированы. Удельный расход ВХ 1,03-1,05 т/т ПВХ.

Преимущества способа: легкость отвода тепла реакции, высокая производительность, относительная чистота ПВХ, хорошая совмещаемость его с компонентами при переработке, широкие возможности модификации свойств ПВХ путем введения различных добавок и изменения параметров режима.

2) Полимеризация в массе по периодической схеме в две ступени. На первой винилхлорид, содержащий 0,02-0,05% по массе инициатора, полимеризуют при интенсивном перемешивании до степени превращения около 10%. Получают тонкую взвесь частиц ("зародышей") ПВХ в мономере, которую переводят в реактор второй ступени. Сюда же вводят дополнительное. количества мономера и инициатора и продолжают полимеризацию при медленном перемешивании и заданной температуре до степени превращения ВХ около 80%. На второй ступени происходит дальнейший рост частиц ПВХ и их частичная агрегация (новых частиц не образуется). Получают пористые гранулы ПВХ с размерами 100-300 мкм в зависимости от температуры и скорости перемешивания на первой ступени. Незаполимеризовавшийся ВХ удаляют, ПВХ продувают азотом и просеивают. Порошок сыпуч и легко перерабатывается.

Преимущества перед суспензионным способом: отсутствие стадий приготовления водной фазы, выделения и сушки ПВХ, в результате уменьшаются капиталовложения, энергозатраты и расходы на обслуживание. Недостатки: затруднены отвод тепла реакции и борьба с коркообразованием на стенках аппаратуры; образующийся ПВХ неоднороден по молекулярной массе, его термостойкость ниже, чем у ПВХ, полученного первым способом.

3) Эмульсионная полимеризация по периодической и непрерывной схеме. Используют растворимые в воде инициаторы (H 2 O 2 , персульфаты), в качестве эмульгаторов - ПАВ (алкил - или арилсульфаты, сульфонаты). Радикалы зарождаются в водной фазе, содержащей до 0,5% по массе инициатора и до 3% эмульгатора, затем полимеризация продолжается в мицеллах эмульгатора. При непрерывной технологии в реактор поступают водная фаза и ВХ. Полимеризация идет при 45-60 º C и слабом перемешивании. Образующийся 40-50% -ный латекс с размерами частиц поливинилхлорида 0,03-0,5 мкм отводится из нижней части реактора, где нет перемешивания. Степень превращения винилхлорида 90-95%. При периодической технологии компоненты (водная фаза, ВХ и обычно некоторое количество латекса от предыдущих операций, так называемый затравочный латекс, а также др. добавки) загружают в реактор и перемешивают во всем объеме. Полученный латекс после удаления ВХ сушат в распылительных камерах и порошок ПВХ просеивают. Хотя непрерывный процесс высокопроизводителен, преимущество часто отдается периодическому, ибо им можно получить ПВХ нужного гранулометрического состава (размеры частиц в пределах 0,5-2 мкм), что очень важно при его переработке. Эмульсионный ПВХ значительно загрязнен вспомогательными веществами, вводимыми при полимеризации, поэтому из него изготовляют только пасты и пластизоли.

Суспензионной полимеризацией в мире производится не менее 80% всего поливинилхлорида, двумя другими способами по ~10%.

2.2 Закономерности полимеризации винилхлорида

Первым делом нужно вспомнить, что такое полимеризация.

Полимеризация - метод синтеза полимеров в результате соединения молекул мономеров, не сопровождающихся выделением побочных продуктов. Поэтому элементарный состав мономеров и получаемого полимера одинаков.

ПВХ получают радикальной полимеризацией. Инициирование полимеризации осуществляется свободными радикалами, образующийся при распаде перекисей или азосоединений. .

Возникающие свободные радикалы инициируют полимеризацию образуя с мономером активные центры:

При синтезе ПВХ передача цепи протекает не только через радикал, но и мономер или полимер по схеме:


Фотополимеризация ВХ на солнечном свету в отсутствии инициаторов протекает очень медленно, но под влиянием ультрафиолетового света - быстрее. Скорость полимеризации может значительно увеличена повышением температуры реакции и добавлением перекисей.

В отсутствии кислорода и инициаторов термическая полимеризация ВХ не проходит, но в присутствии кислорода полимер образуется довольно быстро после некоторого индукционного периода. Считают, что в течение индукционного периода кислород присоединяется к ВХ с образованием перекисей, которые затем распадаются на радикалы и вызывают процесс полимеризации. Опытами было доказано, что при нагревании в пределах 20 - 110ºС в продолжении 50 - 100ч полимер не образуется, если обеспечено отсутствие кислорода.

Полимеризация ВХ в присутствии перекисей, проводимая в блоке или в эмульсии, протекает гораздо быстрее в атмосфере азота, чем в воздухе. Реакция полимеризации очень чувствительна к различным примесям. Ацетилен, метиловый и этиловые спирты, соляная кислота сильно замедляют скорость процесса, а стирол, гидрохинон, резорцин, анилин, фенол, бром и перманганат калия прекращают его. Например. Незначительная примесь стирола резко замедляет скорость реакции полимеризации и заметно снижает молекулярный вес полимера, а введение более 1% стирола приводит к тому, что реакция совсем прекращается.

При полимеризации ВХ в растворе обычно уменьшается скорость реакции и снижается молекулярный вес полимера. В ряде случаев растворитель, оказывает влияние на регулярность расположения звеньев вдоль цепей полимера. В большинстве растворителей (метиловый и этиловый спирты, бензол, толуол, ацетон, уксусная кислота и тд) ПВХ по мере образования из мономера выпадает из раствора. Выпавший полимер сравнительно чист, почти не содержит инициаторов, и низкомолекулярных фракций. В ряд случаев он может быть сразу использован после фильтрации и сушки.

Полимеризация в растворе более широко применяется при изготовлении сополимеров ВХ с винилацетатом (ВА) и другими мономерами.

При полимеризации ВХ могут проходить вторичные реакции, приводящие к изменению первоначально образовавшегося полимера. Если процесс протекает при повышенной температуре (75ºС и выше) образовавшийся вначале полимер долгое время остается нагретым, то от молекул полимера хлористый водород отщепляется. Особенно легко этот процесс протекает в присутствии растворителей.

Если полимеризацию ВХ проводить в мягких условиях (70ºС и ниже), содержание хлора и полученных продуктах соответствует теоретическому.

Механизм полимеризации ВХ в блоке, т.е. в жидкой фазе, в присутствии инициаторов довольно широко исследован. Результаты этих исследований показывают, что полимеризация протекает по обычному радикально - цепному механизму, но имеет две специфические особенности:

1) Возрастание скорости полимеризации от начала реакции до ~50% превращения мономера, получившие название гель эффекта.

2) Гораздо большее значение скорости реакции передачи цепи, чем при полимеризации других виниловых соединений.

Обе эти особенности реакции полимеризации ВХ имеет практическое применение. Первая является причинной непостоянство скорости эмульсионной и суспензионной полимеризации (именно эти способы главным образом и применяются для производства ПВХ в заводском масштабе). Вторая особенность оказывает большое влияние на молекулярный вес получаемого полимера.

2.3 Гель-эффект

В присутствии перекисей и азосоединений ВХ легко полимеризуется при температурах порядка 30 - 80ºС. Начальная и максимальная скорость полимеризации пропорциональны квадратному корню из значения концентрация концентрации инициатора. Поскольку полимер совершенно не растворим в мономере, то немедленно после начала полимеризации происходит его выпадение. Такой процесс носит название гетерогенного. При превращении ~50% мономера скорость полимеризации при 50ºС в присутствии различных количеств перекиси бензоила является максимальной, причем на ранних стадиях реакции скорость непрерывно возрастает, а после 50% превращения медленно падает.

Аналогичные результаты получены при эмульсионной полимеризации ВХ, инициируемой перекисью водорода. Многими исследованиями было показано, что увеличение скорости полимеризации не является следствием присутствия ингибиторов или замедлителей. Оно не зависит от наличия примесей. Имеются несколько различных объяснений гель - эффекту, но ни одно строго не обоснованно.

2.4 Передача цепи и молекулярный вес полимера

Многочисленные следования полимеризации ВХ в присутствии перекиси бензоила показывают, что молекулярный вес полимера:

1) практически не зависит от концентрации инициатора в пределах до 2%, но резко падает при более высоких концентрациях,

2) не зависит от степени превращения мономера и 3) уменьшается с повышением температуры полимеризации.

Молекулярный вес ПВХ, получаемого в промышленности, чаще всего регулируют, изменяя температуру полимеризации, а не концентрацию инициатора.

Степень полимеризации P n ПВХ зависит только от температуры, и с повышением температуры получается полимер с меньшим молекулярным весом. Определение среднечислового молекулярного веса ПВХ осмотическим методом показывает, что при повышении температуры от 30 до 130ºС M n изменяется от 85000 до 14000.

Кроме изменения температуры для регулирования молекулярного веса полимера можно добавлять соединения, способствующие передачи цепи, или использовать метод уменьшения эффективной концентрации мономера в реакционной смеси. В последнем случае можно применить метод полимеризации ВХ в эмульсии при пониженном давлении, т.е. меньшем, чем давление насыщенного пара ВХ при данной температуре. Это ведет к уменьшению концентрации мономера в водной фазе, понижению молекулярного веса полимера и скорости полимеризации. При полимеризации в блоке интенсивное перемешивание приводит к механическому разрушению крупных частиц, что способствует увеличению разветвлений в цепях полимера. Среднее число разветвлений на каждые 1000 звеньев ВХ возрастает со степенью конверсии, но их длина при этом уменьшается. Снижение поверхностного натяжения на границе фаз при гетерофазной полимеризации приводит к быстрому росту частиц и, следовательно, к уменьшению числа разветвлений. Тепловой эффект реакции полимеризации ВХ при 42ºС составляет 21,8 ккал/моль. Изучение кинетики полимеризации в водных эмульсиях в присутствии как водорастворимых, так и растворимых в мономере инициаторов показало, что во время реакции обнаруживаются зоны различной интенсивности тепловыделения. Наряду с зонами, в которых тепло выделяется с постоянной скоростью, имеются зоны, характеризующиеся увеличением экзотермичности процесса. В конце процесса наблюдается период максимального выделения тепла, после которого интенсивность тепловыделения резко падает. Чем выше температура реакции, тем быстрее протекает процесс и тем интенсивнее выделяется тепло.

3. Технология получения ПВХ

ПВХ как было сказано выше, синтезируют в эмульсии, в суспензии и в массе. Метод получения ПВХ влияет и на его свойства (молекулярную массу, размер частиц), относительную стоимость и возможность изготовления сополимеров.

Технологический процесс состоит из стадий:

Предварительная полимеризация ВХ

Окончательная полимеризация

Выделение порошка полимера

Промывка, сушки, просеивания и упаковка.

3.1 Производство поливинилхлорида в массе

Основным сырьем для производства ПВХ служит ВХ. Особенности полимеризации ВХ состоят в следующем. В отсутствие кислорода и инициаторов термическая полимеризация мономера не происходит, но в присутствии кислорода полимер после некоторого индукционного периода образуется довольно быстро. Полимеризация ВХ в присутствии инициаторов протекает гораздо быстрее в атмосфере азота, чем воздуха. Реакция полимеризации очень чувствительна к наличию примесей. Так, ацетилен, метиловый и этиловый спирты, соляная кислота сильно замедляют скорость процесса, а стирол, гидрохинон, резорцин, анилин, дифениламин, фенол прекращают его.

При полимеризации ВХ в массе реакцию проводят в жидком мономере, в котором предварительно растворен инициатор. Она приводит к образованию порошка полимера, нерастворимого в мономере. Процесс осуществляется периодическим или непрерывным методом как при пониженных (−10 ÷ −20°С), так и при обычных температурах (40 ÷ 70ºС). По одной из схем технологический процесс включает следующие стадии: предварительная полимеризация ВХ, окончательная полимеризация ВХ, выделение порошка полимера, промывка, сушка, просеивание и упаковка порошка (рис.1).

Из сборника 1 в автоклав 2 загружают ВХ и инициатор (дипитрилазобисизомасляной кислоты, изопропилпероксидикарбонат и др.), а в рубашку автоклава подают воду температурой 60 - 65°С. Давление в автоклаве повышается до 0,9 - 1,0 МПа. При непрерывном перемешивании турбинной мешалкой в течение 0,25 - 1 ч происходит предварительная полимеризация ВХ (на 10%), приводящая к образованию суспензии ПВХ в жидком ВХ. Контроль полимеризации осуществляют по давлению в автоклаве и температуре воды, циркулирующей в рубашке.

Суспензию сливают в горизонтальный автоклав 3, снабженный рубашкой для обогрева и ленточно - спиральнор мешалкой для перемешивания реакционной смеси, добавляют регулятор молекулярной массы (транс - дихлорэтилен, циклопентен, тетрагидрофуран) и низкотемпературный инициатор (пероксид водорода - аскорбиновая кислота - сульфат железа (II); гидропероксид трет-бутила- триэтилбор и др.) и реакцию в течение

7,5 - 9,5 ч доводят до 60-85% конверсии ВХ при температуре от -10 до

20ºС. Непрореагировавший ВХ из автоклава после фильтрования, охлаждения и конденсации возвращается в сборник 1, а порошок полимера поступает в бункер 4 и далее на вибросито 5, где отбирается фракция с размером частиц не более 1мм. Порошок полимера промывают горячей водой на центрифуге 6, подают в бункер 7, а затем с помощью транспортера 8 загружают в сушилку 9. После сушки горячим воздухом порошок собирают в бункер 10, просеивают на вибросите 11 и упаковывают в тару 12. Крупную фракцию ПВХ измельчают и перерабатывают отдельно.

Процесс предварительной и окончательной полимеризации ВХ проводят в автоклавах, из которых тщательно удаляют кислород воздуха путем продувки ВХ.


Рис.1. На очистку

Схема производства поливинилхлорида в массе: 1 - сборник; 2 - автоклав; 3 - горизонтальный автоклав; 4, 7, 10 - бункеры; 5,11 - вибросита; 6 - центрифуга; 8 - транспортер; 9 - сушилка; 12 - тара для порошка поливинилхлорида.

Во время полимеризации приходится отводить теплоту реакции, так как повышение температуры реакционной смеси приводит к образованию полимера с более низкой молекулярной массой. После окончания процесса через каждые 3 - 4 операции автоклавы очищают от налипшего на стенки полимера, поскольку это ухудшает условия теплосъема. Получаемый ПВХ отличается высокой полидисперсностыо и широким молекулярно-массовым распределением.

Достоинства полимеризации в массе: высокая чистота полимера, его повышенные электроизоляционные свойства, прозрачность изделий.

Производство поливинилхлорида в суспензии

Большая часть ПВХ производится суспензионным методом, обеспечивающим высокое качество полимера (со сравнительно узким молекулярно-массовым распределением) и хорошее регулирование температурного режима процесса (отклонение температуры не превышает 0,5°С). Отвод теплоты реакции (91,6 кДж/моль) осуществляется через дисперсионную среду (водную фазу), в которой диспергируют жидкий ВХ в присутствии гидрофильных защитных коллоидов (стабилизаторов суспензии).

ВХ в водной фазе находится в виде отдельных капель, в которых и происходит его полимеризация. Сначала в каждой капле возникают первичные частицы, набухшие в мономере, которые по мере увеличения их числа агрегируются (слипаются). Такая картина наблюдается при конверсии ВХ до 20-30%. По мере дальнейшего расходования мономера и завершения полимеризации, образующиеся частицы начинают уплотняться с образованием пористых микроблоков, в конечном итоге превращающихся в монолитные твердые микроблоки.

Суспензионный ПВХ получают по полунепрерывной схеме: стадия полимеризации - периодический процесс, а последующие операции проводятся непрерывно. В качестве инициаторов применяют растворимые в мономере динитрил азобисизомасляной кислоты, пероксид лаурила, пероксидикарбонаты и др. Некоторые пероксидикарбонаты ускоряют процесс полимеризации ВХ в 2-3 раза. Наиболее эффективны смеси инициаторов. Стабилизаторами служат метилцеллюлоза, сополимеры винилового спирта с винилацетатом и др. Водорастворимая метилцеллюлоза с содержанием 26-32% метоксильных групп надежно защищает капли мономера от агрегирования при значительно более низких концентрациях по сравнению с другими стабилизаторами. Для обеспечения постоянного значения рН при полимеризации ВХ в систему вводят буферные добавки (водорастворимые карбонаты или фосфаты).

Температура реакции определяет молекулярную массу ПВХ, степень разветвленности макромолекул и термостабильность полимера. В определенной степени на свойства продукта влияют также рецептуры загрузки (массовые соотношения воды и мономера), степень конверсии и другие факторы.

Размеры частиц порошка полимера (до 600 мкм, обычно 75 - 150 мкм) зависят от типа применяемого стабилизатора, его количества и интенсивности перемешивания.

Поскольку рецептуры суспензионной и эмульсионной полимеризации винилхлорида близки, проведем их сравнение. Типичные рецептуры суспензионной и эмульсионной полимеризации винилхлорида приведены в табл.1.

Таблица 1. Рецептуры суспензионной и эмульсионной полимеризации винилхлорида (масс. ч) .

Технологический процесс производства ПВХ в суспензии состоит из следующих стадий: полимеризация ВХ, охлаждение и отжим суспензии, сушка порошка полимера (рис.2).

Схема производства поливинилхлорида в суспензии: 1 - реактор; 2 - емкость деионизированной воды; 3 - емкость раствора стабилизатора; 4 - фильтр; 5 - весовой мерник раствора инициатора; 6 - сборник винилхлорида; 7 - сборник - усреднитель; 8 - центрифуга; 9 - сушилка; 10 - бункер; 11 - узел рассева порошка; 12 - тара для порошка поливинилхлорида

Работающий под давлением реактор 1 объемом 20 - 40м 3 , оснащенный мешалкой и рубашкой для обогрева и охлаждения реакционной смеси, подают определенные количества деионизированной воды из емкости 2, раствора стабилизатора из емкости 3 ( через фильтр 4) и раствора инициатора в мономере из мерника 5. Затем реактор продувают азотом и при перемешивании загружают жидкий ВХ из сборника 6. После загрузки компонентов в реактор в рубашку реактора подают горячую воду для нагрева реакционной смеси до 40 °С. Продолжительность полимеризации при

42 - 88ºС и давлении 0,5 - 1,4 МПа составляет 20 - 30 ч, конверсия мономера 80 - 90%. Окончанием процесса считают понижение давления в реакторе до 0,33-0,35МПа. Вакуум необходим для удаления из аппарата непрореагировавшего ВХ, который затем собирается в газгольдере и направляется на ректификацию. После очистки он вновь используется для полимеризации.

Суспензию образовавшегося полимера передают в сбориик - усреднитель 7, в котором ее смешивают с другими партиями, охлаждают и сливают в центрифугу непрерывного действия 8 для отделения полимера от водной фазы и промывки его водой.

Промывные воды поступают в систему очистки сточных вод. Порошок с влажностью 25 - 35%подается в сушилку 9, где его сушат горячим воздухом при 80 - 120°С до содержания влаги 0,3 - 0,5%. Затем порошок сжатым воздухом передают в бункер 10, а из него в узел рассева 11. Полученный порошок упаковывается, а непросеянная крупная фракция поступает на дополнительный размол.

Суспензионный ПВХ выпускают в виде однородного порошка белого цвета с насыпной плотностью 450-700 кг/м 3 .

Молекулярная масса полимера характеризуется константой К ф (константой Фикентчера), изменяющейся для суспензионного ПВХ от 47 до 76 в зависимости от марки. Константу К ф можно вычислить из соотношения:


К ф = 1000k ;

где значение k определяют по формуле:

где относительная вязкость раствора ПВХ при 25°С;

с - концентрация раствора (0,5 или 1г полимера в 100 мл циклогексанона или дихлорэтана).

Производство поливинилхлорида в эмульсии

Полимеризация ВХ в эмульсии так же, как и в суспензии, осуществляется в водной среде, но в присутствии ионогенных поверхностно - активных веществ (эмульгаторов) и инициаторов, растворимых в воде. К эмульгаторам относят: натриевые и калиевые соли жирных кислот (стеариновой, олеиновой и др.), соли алифатических и ароматических сульфокислот (лаурилсульфат, дибутилнафталинсульфат, додецилбензолсуьфат натрия и др.) Природа и количество эмульгатора (0,1 - 3%) оказывают существенное влияние на полимеризацию в эмульсии. В частности, с увеличением его содержания возрастает скорость процесса в 2 - 3 раза выше, чем полимеризация в суспензии и массе. Инициаторы процесса - водорастворимые пероксиды и гидропероксиды (пероксид водорода, персульфаты аммония, натрия, калия). Для снижения температуры реакции с 50 - 90ºС до 15 - 20ºС добавляют ускорители распада инициаторов: сульфат железа (II), бикарбонат, бисульфат и тиосульфат натрия, аскорбиновую кислоту и т.д.

Скорость процесса и свойства ПВХ зависят от природы и концентрации инициатора и эмульгатора, рН среды, соотношения мономер: водная фаза, температуры и других факторов. Обычно этим методом получают ПВХ с размером частиц от 0,1 до 3 мкм. Исходя из назначения полимера (для производства паст, латексов, пластмасс), выбирают соответствующую рецептуру и режим полимеризации. Типичная рецептура приведена в табл.1. Большое значение при эмульсионной полимеризации имеет рН водной фазы. Регуляторами рН служат фосфаты или карбонаты натрия. Обычно рН среды поддерживается в пределах 8 - 8,5.

Эмульсионный ПВХ содержит эмульгатор и буферные добавки, не удаляемые при промывке, и поэтому отличается от суспензионного полимера пониженными прозрачностью, диэлектрическими показателями, термостабильностью и др. Но из-за высокой скорости полимеризации и значительной дисперсности порошка этот способ полимеризации находит применение.

Эмульсионный ПВХ получают полимеризацией ВХ по периодической и непрерывной схемам. Технологический процесс производства непрерывным методом состоит из следующих стадий: полимеризация ВХ, дегазация, стабилизация и сушка латекса, рассев порошка приведены на рис 3.

В реактор 1 объемом 15-30м 3 под давлением 1,0 - 1,1 МПа непрерывно поступает жидкий ВХ и водная фаза - раствор эмульгатора, регулятора рН и инициатора в деионизированной воде.

В верхней секции реактора с помощью коротколопастной мешалки (1 - 1,4 об/с) создается эмульсия мономера в воде и через рубашку осуществляется подогрев эмульсии до 40 °С.


Рис.3. Винилхлорид

Схема производства поливинилхлорида в эмульсии: 1 - реактор-автоклав; 2 - дегазатор; 3 - сборник латекса; 4,5 - аппараты для стабилизации: 6 - сушилка; 7 - циклон; 8 - рукавный фильтр; 9,10 - бункеры

По мере движения эмульсии от верхней до нижней части реактора при 40-60ºС происходит полимеризация ВХ с конверсией 90 - 92%. Продолжительность полимеризации 15 - 20ч. Полимеризация проводится либо в одном реакторе, либо в двух, соединенных последовательно.

Латекс, содержащий около 42%ПВХ, направляют в дегазатор 2, в котором под вакуумом (остаточное давление 19-21кПа) удаляют непрореагировавший растворенный ВХ (после ректификации его возвращают в производство), а затем в сборник 3. Из сборника латекс поступает сначала в аппараты 4 и 5для стабилизации ПВХ 5% водным раствором соды, а затем в распылительную сушилку 6. Сушка осуществляется горячим воздухом (160°С) подаваемым в верхнюю часть сушилки. Воздух с взвешенным порошком ПВХ (70°С) направляется в циклон 7 , где оседает основная часть порошка. Остальная его часть улавливается рукавным фильтром 8. Порошок ПВХ из бункеров 9 и 10 поступает на рассев и упаковку.

Выделение порошка из латекса можно осуществлять не только проводя операцию сушки, но и методом коагуляции. В этом случае нестабилизированный латекс перекачивают в осадитель и с помощью электролита (водного раствора сульфата аммония) и активного перемешивания разрушают. При этом полимер выпадает в виде частиц. После фильтрования и промывки на центрифуге водой порошок сушат в сушилке. Затем его измельчают, просеивают и упаковывают.

Порошкообразный и гранулированный ПВХ является сырьем для производства основных промышленных марок, а именно - жесткого ПВХ - винипласта и эластичного пластиката. Винипласт выпускается в виде листов, прутков, труб.

3.2 Производство жесткого поливинилхлорида

Для производства листов и пленок используется метод экструзии, состоящий из следующих стадий: смешение компонентов, получение пленки экструзией, каландрование пленки, прессование листов показано на рис 4.

Порошкообразный ПВХ из хранилища 1 через бункер - циклон 2 и барабанный питатель 3 пневмотранспортом направляется в двухкорпусной вихревой смеситель, состоящий из смесителя с обогревом 4 и смесителя с охлаждением 5. ПВХ, унесенный воздухом из бункера - циклона 2, отделяется в рукавном фильтре 6 и поступает в общий трубопровод ПВХ. Стабилизатор (меламин) транспортером подается через бункер - циклон 7 в шаровую мельницу 8, где дробится и смешивается с небольшим количеством ПВХ. Полученная стабилизирующая смесь - концентрат из мельницы 8 подается в вакуум - приемник 9, а затем тарельчатым питателем 10 в смеситель 4, в который вводятся стеараты из плавителя и трансформаторное масло, служащие для пластификации композиции при переработке.


Схема производства листового винипласта: 1 - хранилище ПВХ; 2,7 - бункеры-циклоны; 3, 10 - питатели; 4 - смеситель обогреваемый; 5 - смеситель охлаждаемый; 6 - рукавный фильтр; 8 - шаровая мельница; 9 - вакуум-приемник; 11 - экструдер; 12 - каландр; 13 - тянущие валки; 14 - резательный станок; 15 - укладчик; 16 - многоэтажный пресс

Ниже приведены нормы загрузки компонентов в смеситель (масс, ч):

Стабилизаторы 2 - 5

Смазывающие вещества 1,5 - 4

В отдельных случаях в рецептуру винипласта вводят до 5% пластификатора. После тщательного перемешивания композиция подается в смеситель 5 , откуда непрерывно поступает в бункер вибропитателя двухшнекового экструдера 11 со щелевой головкой. В экструдере масса нагревается до 175 - 180ºС, перемешивается и пластифицируется. Из головки экструдера полимер выдавливается в виде бесконечной ленты - полотна, которая поступает на верхний валок калибрующего каландра 12, нагретый до 155 - 160ºС, огибает средний валок и выходит в зазор между средним и нижним (температура 165 - 170°С) валками. С каландра лента направляется тянущими валками 13 в станок 14, где производится обрезка кромок (дисковыми ножами) и нарезание ленты на листы (гильотинными ножницами). Далее лист поступает на транспортер укладчика 15. Таким образом, получают листы винипласта (пленочный винипласт) толщиной

0,5 -5мм. Для получения более толстых листов (листового винипласта) толщиной 5 - 20мм тонкие листы пленочного винипласта набирают в пакеты и прессуют на многоэтажных гидравлических прессах 16 при 170 - 175°С и давлении до 1,5 - 10 МПа в зависимости от вязкости ПВХ и толщины листов.

Трубы диаметром 6 - 400мм, стержни, прутки для сварки изделий из винипласта и другие профили получают по несколько упрощенной схеме с применением соответствующей формующей головки в экструдере (отсутствуют каландр, пресс, изменены тянущие и резательные устройства).

3.5 Производство эластичного поливинилхлорида

Эластичный ПВХ (пленки из него называют пластикатом) получают на основе порошкообразного ПВХ и пластификаторов. В зависимости от назначения композиции содержат различное количество пластификаторов, стабилизаторов, наполнителей, красителей. В промышленности пластикат выпускается в виде пленки (пленочный пластикат) и в виде ленты, трубок или шлангов (кабельный пластикат).

Пленочный пластикат получают экструзией, каландрованием и реже вальцеванием. Технологический процесс производства пленочного пластиката методом экструзии состоит из следующих стадий: смешение компонентов, экструзия массы, каландрование пленки, намотка и упаковка пленки как изображено на рис.5.


Схема производства пленочного пластиката: 1 - хранилище ПВХ; 2,5 - бункеры-циклоны; 3 - вибросито; 4 - экструдер; 6 − весовой мерник; 7 - каландр 8" - намоточный станок

ПВХ из хранилища 1 пневмотранспортом подают в бункер-циклон 2, а оттуда на вибросито 3 и в двухшнековый экструдер 4. Стеарат кальция из бункера пневмотранспортом направляется в бункер - циклон 5, расположенный над загрузочным бункером экструдера 4. Сюда же из весового мерника 6 самотеком поступает пластификатор.

Смешение компонентов, пластикация и гомогенизация массы происходят в экструдере 4 при 145 - 155ºС, откуда смесь через щелевую головку выдавливается в виде бесконечной пленки и транспортером непрерывно подается в зазор между валками четырехвалкового каландра 7. Температуру каждого валка каландра регулируют подачей пара в пределах 140 - 170°С. В процессе каландрования происходит ориентация макромолекул в направлении движения валков и окончательная калибровка пленки. После намотки на станке 8 рулоны пленки толщиной 0,12-2,0мм транспортером подают на упаковку.

На современных производствах между каландром и узлом намотки размещают узлы - нормализаторы свойств пленки. Обычно это термокамеры, обеспечивающие плавное охлаждение пленки и ее релаксацию в интервале температур 100 - 50°С.

3.3 Сведенья о технике безопасности при производстве ПВХ

ВХ транспортируют и хранят в баллонах в присутствии ингибитора (гидрохинон, трет - бутилпирокатехин и т.д.), но в некоторых случаях допускается его хранение без ингибитора при низких температурах (− 40ºС и ниже). В отсутствии кислорода мономер устойчив. С воздухом образует взрывоопасные смеси.

Баллоны, сборники, вентили и предохранительные устройства, соприкасающиеся с ВХ, должны быть изготовлены из стали или материалов, предотвращающих образование взрывчатых ацетиленидов меди. Сборники не следует заполнять мономером более чем на 85% их объема. ВХ токсичен, обладает наркотическим и канцерогенным действием.

Все производства ПВХ пожаро - и взрывоопасны, поэтому отделения полимеризации располагают в одном здании, а центрифуги, сушилку, узлы рассева и хранилища - в другом. Порошки ПВХ менее опасны при хранении.

Все сточные воды (6 - 8т на 1т ПВХ) подвергают биологической отчистке после отстаивания и отделения осадка унесенного ПВХ. ПВХ и сополимеры ВХ являются безвредными веществами, если из них полностью удален остаточный мономер. При их горении выделяются токсичные вещества.

4. Свойства ПВХ

4.1 Физико-механические свойства ПВХ

ПВХ полимер преимущественно линейного строения. Полимер - твердый продукт белого цвета, степень полимеризации 100-2500. Элементарные звенья в цепях полимера расположены в основном в положении 1,2. Степень упорядоченности макромолекул ПВХ зависит от температуры полимеризации, а также от молекулярной массы, которая составляет 40000 - 150000. Максимально возможная упорядоченность реализуется при температурах полимеризации выше 55°С или в случае отжига при температурах выше 70-80ºС. Степень кристалличности промышленного ПВХ может достигать 10%. Конформации цепи ПВХ - плоский зигзаг. Кристаллический ПВХ имеет синдиотактическую конфигурацию с орторомбической элементарной ячейкой, содержащей два мономерных звена.

Ниже приведены некоторые физико-механические свойства для прессованных образцов ПВХ:

Плотность при 20°С, г/см 3 ...1 ,35 - 1,43

Показатель преломления...1,544

Температуpa текучести, °С...180 - 220

Температура стеклования, °С...78-105

Теплопроводность, вт/ (м К)...0,15-0,175

кал/ (г °С)...0, 13-0, 15

Уд теплоемкость, кдж/ (кг К)... 1, 00 - 2,14

кал/ (г °С)...0,24-0,51

Водопоглощение

за 24 ч,% (г/м 2)...0 ,4 - 0,6 (0,11 - 0,3)

за 1000 ч, г"м 2... 4 00

Прочность, Мн/м 2 (кгс/см 2)

при растяжении...40-60 (400-600)

при сжатии...78 - 160 (780-1600)

при изгибе...80-120 (800-1200)

Температуpa текучести ПВХ тем выше, чем ниже температуpa полимеризации. Она совпадает или даже выше температуры заметной деструкции ПВХ

Свойства ПВХ можно модифицировать смешением его с др. полимерами или сополимерами. Так, ударная прочность повышается при смешении ПВХ с хлорированным полиэтиленом, хлорированным или сульфохлорированным бутилкаучуком, метилвинилпиридиновым или бутадиен - нитрильным каучуком, а также с сополимерами стирол - акрилонитрил или бутадиен - стирол - акрилонитрил.

ПВХ, полученный полимеризацией в массе, суспензии или эмульсии, - капиллярно - пористый порошкообразный материал, свойства которого, такие, как молекулярная масса, молекулярно-массовое распределение, строение цепи и др., в значительной мере определяют поведение полимера при переработке и свойства изделий из него. По морфологическому признаку зерна суспензионного порошкообразного ПВХ подразделяют на:

1) однородные (монолитные с преобладанием прозрачных зерен или непрозрачных зерен) и 2) неоднородные, пористые (преобладания зерен какого - либо одного типа нет). Морфология зерен эмульсионного ПВХ существенно отличается от морфологии зерен суспензионного ПВХ. Зерна эмульсионного ПВХ делят на два типа: ценосферические (полые частицы) и пленосферические (компактные частицы). Целесообразность получения зерен ПВХ того или иного типа определяется конкретным назначением данного сорта ПВХ. Свойства ПВХ как порошкообразного материала приведены в таблице 2.


Таблица 2. Физические свойства порошкообразного суспензионного ПВХ

Свойства Пористые зерна Монолитные зерна Неоднородные зерна
Константа Фикентчера,
Кф 71 77 74 75 60 63 65 70 77
Плотность, г/см 3 1,419 1,402 1,401 1,396 1,392 1,400 1, 307 1,345 1,246
Содержание монолитных
зерен,% 0 16 12 71 77 85 45 58 26
Насыпная масса, г/см 3
до утряски 0,48 0,55 0,55 0,75 0,57 0,62 0,57 0,46 0,49
после утряски 0,62 0,68 0,67 0,88 0,73 0,81 0,77 0,74 0,67
Суммарная пористость порошка,% 56 52 52 37 48 42 43 50 46
Количество пластификатора,
поглощаемого на
холоду, мл/г 0,92 0,90 0,84 0,56 0,76 0,51 0, 52 0, 53 0.66
Уд. поверхность, см 2 /г 1000 650 850 560 750 1500 1150 4 150 1330
Средний диаметр зерен, мкм 125 170 70 110 75 27 55 29 16
Сыпучесть, г/сек 33 33 29 24 30 37 43 50 4 4

Благодаря высокому содержанию хлора (≈ 56%), ПВХ не воспламеняется и практически не горит. При температуре 140ºС ПВХ разлагается с выделением хлористого водорода, что затрудняет его переработку, т.к температура текучести полимера равна 150 - 160ºС. Переработка ПВХпроизводится при 140 - 180ºС.

4.2 Химические свойства ПВХ

Результате длительного нагревания при 65°С ПВХ со смесью уксусной кислоты и уксуснокислого серебра большая часть атомов хлора замещается ацетатными группами, при этом образуется продукт со свойствами, характерными для поливинилацетата.

При взаимодействии ПВХ с аммиаком в диоксане, диметилформамиде или дихлорэтане при 100 - 140°С под давлением (не менее 0,2 Мн/м 2

(2 кгс/см 2)), с ароматическими аминами при температуре не ниже 100°С атомы хлора замещаются аминогруппами, причем реакция с аммиаком сопровождается образованием еще и поперечных иминных связей. Если берут избыток амина более 2,5 моль/моль, весь хлор в ПВХ замещается аминогруппами.

В присутствии катализаторов Фриделя - Крафтса при 0 - 25°С в растворе тетрагидрофурана ПВХ взаимодействует с ароматическими соединениями, при этом хлор замещается арильными группами. Реакция сопровождается циклизацией и сшиванием. Скорость процесса зависит от строения ароматического соединений и уменьшается в ряду: бензол, толуол, м-ксилол, нафталин, мезитилен. Реакцию можно проводить до полного замещения хлора. Замещение хлора происходит и при взаимодействии ПВХ с 1,2-дихлорэтаном и 1,1,2,2-тетрахлорэтиленом.

При обработке ПВХ литием или калием образуется металлированный полимере содержащий небольшое количество хлора, циклопропановые кольца и поперечные связи. (В результате нагревания раствора ПВХ в тетрагидрофуране с литийалюминийгидридом при 100°С образуется полиэтилен (Т пл -120°С). При обработке ПВХ литийалюминийгидридом в безводном эфире в присутствии 0 2 , а также водой или водными растворами алифатических спиртов в присутствии щелочных или кислых катализаторов при 40 - 70°С (3 - 50 ч) часть атомов хлора замещается гидроксильными группами.

Хлор (~20%) замещается оловоорганическими группами при взаимодействии ПВХ в тетрагидрофуране с Li-производными оловоорганические соединениями, напр. LiSn (C 6 H 5) 3 , или ацильнымн группами при нагревании ПВХ выше 120 - 150 °С с оловоорганическими соединениями типа (C 4 H 9) 2 SnX 2 , где X - остаток кислоты.

В хлорбепзольном, тетрагидрофурановом или тетрахлорэтановом растворе при 60 - 100°С часто в присутствии инициатора (перекиси, азодинитрилы) ПВХ легко хлорируется с образованием 1,2 - и 2,2-дихлорпроизводных, содержащих до 75% хлора.

Модифицированный таким образом ПВХ обладает повышенной химической стойкостью и растворяется в ацетоне и хлороформе Продукт, характеризующийся более высокой теплостойкостью (Т стекл. -140°С) и лучшими механическими свойствами, чем ПВХ, получается в результате хлорирования ПВХ, суспендированного в СС1 4 , воде или соляной кислоте с добавками органических растворителей (хлороформ, бензол, толуол, ксилол, хлорбензол и др.), которые способствуют набуханию ПВХ.

Многие реакции ПВХ сопровождаются его дегидрохлорированием с образованием двойных связей С=С и появлением от желтой до черной окраски. Разложение полимера сопровождается изменением окраски (от желтой до коричневой) и ухудшением растворимости. ПВХ изменяется даже под действием света - "стареет".

До 60°С ПВХ устойчив к действию НС1 и НСООН любых концентраций, H 2 S0 4 - до 90% -ной, HNO, - до 50% -ной и СН 3 СООН - до 80% -ной концентрации. ПВХ не изменяется при действии щелочей любых концентраций, промышленных газов (N0 2 , Cl 2 , S0 3 , HFи др.), растворов солей Al, Na, К, Fe, Си, Mg, Ni, Zn, Sn и др. металлов, а также бензина, керосина, масел, жиров, глицерина, спиртов, гликолей. ПВХ стоек к окислению и практически не горюч.

До начала заготовительных и монтажных работ с применением пластмассовых труб и санитарно-технических устройств рабочие и инженерно-технический персонал должны быть ознакомлены с правилами и приемами, обеспечивающими безопасность указанных работ.

Пластмассовые трубы, патрубки и фасонные части в условиях монтажа и эксплуатации не выделяют в окружающую среду токсичных веществ и не оказывают вредного влияния на организм человека при непосредственном контакте. Работа с ними не требует особых мер предосторожности.

При распиливании и фрезеровании пластмассовых деталей образуется стружка скалывания. В ней находится много мелких пластмассовых частиц и пыл и, вредно действующих на органы дыхания. В связи с этим циркульные пилы и фрезерные станки оборудуют местными отсосами. Так как пластмассы обладают небольшим удельным весом, стружка легко уносится потоком воздуха. При работе нужно пользоваться защитными очками.

При любом виде механической обработки следует помнить, что в связи с низкой теплопроводностью пластмасс режущий инструмент может сильно нагреваться. При снятии деталей и смене инструмента следует оберегать руки от ожогов. Для охлаждения инструмента нужно применять поток сжатого воздуха. При токарной обработке пластмассовых труб образуется непрерывная сливная стружка, которая, наматываясь на инструмент и деталь, может привести к их поломке. Стружку нужно удалять струей сжатого воздуха или включать обратный ход шпинделя, чтобы стружка падала вниз.

Из-за повышенной хрупкости механическая обработка ПВХ при температурах ниже 5°С не допускается. Разогрев и формование пластмассовых труб осуществляют при температуре 100 - 190°С, поэтому нужно принимать специальные меры, чтобы не получить ожогов. Все работы проводят в рукавицах. При нагревании открытым пламенем соблюдают все меры предосторожности, имея в виду, что полиэтилен и полипропилен горючи. Нагрев открытым пламенем применяют в исключительных случаях.

Опасен с точки зрения получения ожогов также разогрев пластмассовых изделий в масле или глицерине, брызги которых могут вызвать сильные ожоги, поэтому работать нужно в спецодежде.

Пластмассовые трубы часто нагревают в газо- и электронагревательных печах. Во всех случаях должны быть приняты специальные меры противопожарной безопасности. Так, например, полы, верстаки и стены помещения должны быть из трудновоспламеняющихся материалов. В помещении предусматривается необходимое количество средств для тушения пожара. Корпуса электронагревательных устройств обязательно заземляют во избежание поражения электрическим током.

При действии открытого пламени трубы и детали из ПВХ загораются без взрыва, без пламени затухают. Трубы, патрубки и фасонные части относятся к группе трудносгораемых, трудновоспламеняющихся. Средства пожаротушения и для сгораемых полимеров (ПЭ, ПП), и для ПВХ - распыленная вода, пена, песок, кошма и т.д.

С клеящими составами для труб из ПВХ при выполнении трубозаготовительных работ следует работать в помещениях с вытяжной вентиляцией. На каждом рабочем месте должна быть предусмотрена местная вытяжная вентиляция.

Клей и растворители - огне- и взрывоопасные материалы, требующие строгого соблюдения мер пожарной безопасности. Транспортирование клеев и растворителей должно осуществляться в герметически закрытой таре в соответствии с действующими правилами перевозок легковоспламеняющихся материалов. Разгружать клеевые материалы следует не ближе 50 м от источника огня. Сбрасывать тару с клеями и растворителями, а также подвергать ее ударам запрещается. Клеевые материалы хранят в герметически закрытой таре в помещении, защищенном от действия солнечных лучей, на расстоянии не менее 2 м от приборов отопления.

Работы по склеиванию труб и фасонных частей из ПВХ производят в основном в условиях заготовительного. В небольших объемах клеевую технологию можно применять при монтаже и выполнении ремонтных работ. К работе с клеями и растворителями допускаются лица, информированные о свойствах веществ и мерах пожарной безопасности.

Каждый рабочий должен знать технологию применения клеев и растворителей, специальные инструкции по технике безопасности при тушении пожаров и предотвращению взрывов, правила личной гигиены.

Работы по склеиванию обычно выполняют под руководством и наблюдением ответственного лица, назначенного приказом по организации из числа ИТР, прошедшего специальный инструктаж по технике безопасности при выполнении указанных работ у главного инженера.

Вентиляцию и проветривание помещений следует производить в течение 1 ч после окончания работ по склеиванию. В процессе работы дверные проемы, ведущие в смежные помещения, должны быть закрыты. Все устройства, которые могут стать источником искрения, возгорания и т, п., должны быть удалены. Запрещается производить электросварочные или другие виды работ, при выполнении которых возможно возникновение пожара. На рабочих местах, а также в смежных помещениях не допускается курение и применение электронагревательных приборов. Подогревать клеи и растворители запрещается. Для исключения искрообразования вскрытие тары с клеем и растворителем должно производиться пластмассовыми, резиновыми и деревянными шпателями. Количество клеев и растворителей на рабочем месте не должно превышать необходимого для выполнения разового задания. Банки с указанными материалами следует открывать непосредственно перед употреблением, а по окончании работы плотно закрывать. Для исключения прямого контакта клеевых материалов с кожей рекомендуются следующие меры предосторожности: руки необходимо защищать резиновыми перчатками или смазывать предохранительными пастами (типа ПМ-1) или мазями типа "биологических перчаток"; при случайном попадании клея на кожный покров надо удалить его бумажной салфеткой и вымыть загрязненное место теплой водой с мылом.

Запрещено разводить огонь и производить электро-и газосварочные работы рядом с пластмассовыми трубами при их складировании на базах и стройплощадках, а также во время монтажа. Во избежание загорания труб на базах и стройплощадках следует предусмотреть все противопожарные меры. Места складирования труб должны быть обеспечены средствами пожаротушения.

Масса переносимых труб и других материалов не должна превышать для мужчин 50 кг.

При работе со сварочной установкой все металлические нетоковедущие части ее электрооборудования должны иметь надежный контакт с металлоконструкцией через защищенные поверхности соприкосновения или через специально проложенный проводник. Заземление установки должно быть выполнено в соответствии с правилами устройства электроустановок.

К электрической сети установку подключают через защитно-отключающее устройство (ЗОУ). Перед началом работы, нажав кнопку контроля, необходимо убедиться в исправном состоянии ЗОУ. При работе без ЗОУ необходимо пользоваться диэлектрическими ботами и перчатками.

К работе на сварочных установках допускаются лица, которые имеют представление об их устройстве и принципе действия. Эти лица должны четко знать назначение элементов управления работой установок, порядок выключения в аварийных ситуациях. Лица, которым предстоит работать на установке, должны иметь квалификационную группу по технике безопасности не ниже II.

Осматривать электрооборудование установки должен монтер вместе с оператором. Обнаружив неисправность в работе электрооборудования, оператор обязан вызвать дежурного монтера, который обслуживает установку.

Осматривая электрооборудование под напряжением, нельзя касаться токоведущих частей, обтирать их или очищать, устранять обнаруженные неисправности. Профилактические работы можно проводить только при снятом напряжении.

Включенную в сеть установку нельзя оставлять без надзора. Перемещать ее можно лишь в обесточенном состоянии. Заменять нагревательные диски разрешается только обслуживающему установку оператору. При этом он обязан отключить установку от сети.

В дождливое время сварку производить нельзя. В случае повышенной влажности при оплавлении труб электронагревательным диском необходимо работать в резиновых перчатках.

Идущие к установке провода прокладывают так, чтобы они не касались металлических предметов. Кабель необходимо защитить от механических повреждений.

В помещениях, где производят заготовительные работы с пластмассовыми трубами, осветительная арматура и электродвигатели должны быть во взрывобезопасном исполнении.

Обезжиривание торцов труб перед сваркой производят с соблюдением данных требований:

работать следует на открытом воздухе с наветренной стороны;

при работе в помещениях они должны быть оборудованы приточно-вытяжной вентиляцией;

на участках обезжиривания нельзя принимать пищу, курить и пользоваться открытым огнем;

ванны и посуду с растворителями, а также неочищенную тару из-под них запрещено располагать вблизи нагревательных приборов;

рабочим, занятым обезжириванием, следует по окончании смены принимать душ.

Место, где установлен рабочий орган разметочно-отрезного станка с дисковой пилой, должно иметь ограждение.

При монтаже водосточных бухт-стояков полной заводской готовности траверсы и другие грузозахватные приспособления должны обеспечивать устойчивость бухт-стояков в горизонтальной плоскости во время их перемещения и подъема на крышу здания. Следует исключить возможность самопроизвольного отцепления. Угол между ветвями стропов не должен превышать 90°.

Места строповки на бухтах-стояках следует наметить заранее. Центр тяжести бухт должен находиться приблизительно в их геометрическом центре. Работающих на крыше необходимо в соответствии с типовыми нормами обеспечить предохранительными поясами, спецодеждой и спецобувью. Выполнение работ на крыше запрещено во время гололедицы, густого тумана, ветра силой более 6 баллов, ливневого дождя, грозы и сильного снегопада. По окончании смены, а также на время перерыва в работе все остатки материалов, приспособления и инструменты необходимо убрать с крыши или надежно закрепить.

Для проверки совпадения болтовых отверстий при соединении фланцев рабочим выдают специальные оправки. Запрещено проверять совпадение отверстий пальцами.

Гидравлические испытания частей или смонтированных систем пластмассовых трубопроводов следует проводить с особой осторожностью. Нельзя стучать по трубам и деталям во время их испытания. Необходимо следить, чтобы возле труб с торцовыми заглушками не находились люди.

При монтаже пластмассовых трубопроводов необходимо соблюдать осторожность во избежание, например, падения деталей на ноги и т.п. Место монтажа трубопроводов должно быть заранее подготовлено. Все необходимые отверстия в стенах и перекрытиях должны быть выполнены заранее и иметь необходимые размеры.

Леса, подмости и лестницы, используемые при монтажных работах, должны быть в исправном состоянии. На месте монтажа нужно соблюдать чистоту и порядок.

Строгое соблюдение правил техники безопасности и охраны труда при устройстве санитарно-технических систем из пластмассовых труб исключает производственный травматизм, способствует повышению их качества и сокращению сроков монтажных работ.

Инструкция по охране труда для монтажника пластиковых и алюминиевых конструкций

Техника безопасности

1. Общие положения

1.1. К работе в качестве монтажника пластиковых и алюминиевых окон допускаются мужчины, достигшие 18 лет и имеющие стаж работы в других подразделениях организации не менее 6 месяцев. К самостоятельной работе допускаются лица, прошедшие стажировку на рабочем месте под руководством опытного рабочего не менее 14 рабочих дней.

1.2. Монтажнику следует помнить, что вследствие невыполнения требований, изложенных в инструкции по охране труда, правилах внутреннего трудового распорядка, ППБ и ПТБ, при проведении монтажных работ может возникнуть опасность поражения электрическим током; травмирования, падения с высоты, отравления химическими веществами.

1.3. Деревянные рукоятки ручных инструментов должны быть изготовлены из древесины твердых и вязких пород (кизил, бук, граб, береза) с влажностью не более 12%, гладко обработаны и надежно закреплены. На поверхности рукояток не допускаются выбоины, выпадающие сучья и Сколы. Рабочие части инструмента не должны иметь трещин, заусенцев и подсечек.

1.4. К работе с электрифицированным инструментом допускаются лица, прошедшие производственное обучение и имеющие допуск.

1.5. Ручной и электрифицированный инструмент должен иметь правильную заточку, а зубцы дисковых пил, кроме того - правильную разводку. Все пусковые и тормозные устройства должны быть ограждены. Корпуса электроинструментов должны быть заземлены.

1.6. Монтажнику выдаются бесплатно следующие средства индивидуальной защиты:

  • костюм хлопчатобумажный ГОСТ 12.4.109-82 12 мес.
  • рукавицы с наладонником из винилискожи ГОСТ 12.4.010-75 2 мес.
  • ботинки кожаные ГОСТ 12.4.060-78 12 мес.

1.7. Монтажнику запрещается:

  • применять опасные методы и приемы работы;
  • включать электроинструмент и работать (в рабочем режиме)при снятых, неисправных или неправильно установленных оградительных, блокировочных или сигнальных устройствах, при отсутствии или неисправности защитного заземления;
  • выполнять работы без соответствующих исправных средств индивидуальной защиты и специального инструмента;
  • прикасаться к движущимся и вращающимся механизмам, к токоведущим частям оборудования, разъемам, соединительным кабелям, питающим проводам;
  • самостоятельно устранять неисправности, разбирать и ремонтировать механизмы, электрооборудование, светильники, кабели штепсельные соединения, открывать дверцы электрошкафов и механизмов привода;
  • включать и останавливать (кроме аварийных случаев) оборудование, на котором не поручено работать;
  • работать с электропилами в расстегнутых или длинных рукавах без указанного их закрепления.

1.8. За невыполнение требований безопасности, изложенных в настоящей инструкции, рабочий несет дисциплинарную ответственность.

2. Требования безопасности перед началом работ

2.1. Привести в порядок рабочую одежду: застегнуть или обхватить широкой резинкой обшлага рукавов, убрать концы косынки или платка, заправить одежду так, чтобы не было развевающихся концов, убрать волосы под плотно облегающий головной убор. Приготовить исправные рукавицы.

2.2. Проверить не загромождены ли проходы и рабочее место, привести его в порядок, убрать все лишние предметы. Рабочий инструмент, приспособления и вспомогательные материалы расположить в удобном и безопасном для использования порядке и проверить их исправность. Неисправный инструмент и приспособления с рабочего места убрать.

2.3. Убедиться в том, что рабочее место достаточно освещено и свет не будет слепить глаза.

2.4. Проверить состояние оборудования:

  • в рабочем режиме все приводные устройства должны быть закрыты ограждениями;
  • розетки и вилки для подключения оборудования и устройств должны быть трехклеммными;
  • расположение контактов в розетках должно быть следующим:
  • ноль слева, фаза справа, посередине - защитное заземление.

2.5. Ознакомиться с предстоящей работой, продумать порядок ее выполнения. Согласовать с руководителем работ приемы работ и дополнительные средства защиты (предохранительный пояс, респиратор, защитные очки и т. п.)

2.6. При выполнении малярных работ с вредно действующими красками дополнительно выдается:

  • перчатки резиновые дежурные;
  • респиратор;
  • очки защитные.

2.7. Для защиты кожного покрова следует применять перчатки двухслойные из латекса, пасту ИЭР-1 или ХИОТ-6, либо другие мази и пасты.

3. Требования безопасности во время работ

3.1. При выполнении работ с повышенной опасностью, получить наряд-допуск на производство работ с повышенной опасностью.

3.2. При погрузке, разгрузке и укладке монтируемых окон на автомобиль соблюдать следующие правила:

a) располагать груз равномерно по все площади кузова;

b) закреплять предназначенные для монтажа окна установленным образом (увязка грузов металлическими канатами или проволокой не разрешается);

c) высота груза не должна превышать габаритную высоту мостов и ворот, встречающихся на пути следования автомобиля, а в других случаях должна превышать установленные ПДД габариты;

d) при погрузке ящиков, бочек и других штучных грузов между отдельными местами груза укладывать деревянные прокладки и распорки в целях исключения перемещения грузов в кузове автомобиля при трогании его с места, крутых поворотах и резком торможении;

e) бочки с жидкостью закреплять в положении пробками вверх;

f) не находиться в кузове, на подножках автомобиля-самосвала во время его движения и разгрузки;

g) во время движения автомобиля следить за устойчивым положением грузов, при ослаблении канатов или открывании борта кузова немедленно сообщить об этом водителю и после остановки устранить неполадки;

3.3. При погрузке и разгрузке окон больших габаритов соблюдать следующие правила:

a) окна больших габаритов грузить только на автомобили, имеющие приспособления для крепления окон (съемные или откидные стойки, прочные цепи, канаты);

b) при работе, выполняемой вручную, пользоваться слегами достаточной прочности (слеги должны быть длиной не менее 4-х метров и диаметром не менее 5 см.);

c) при разгрузке тяжеловесных и длинномерных окон применять страховку груза канатами и строго соблюдать меры личной безопасности;

d) при переносе длинномерных окон несколькими рабочими находиться с одной стороны по отношению к грузу, опускать длинномерный груз только по команде бригадира или старшего рабочего;

3.4. При перемещении окон по наклонной плоскости применять задерживающие приспособления для того, чтобы окно не соскальзывало под действием собственной массы.

3.5. Не загромождать проходы и рабочие места строительными материалами,

3.6. Переносить инструмент только в специально оборудованных для этих целей сумках и ящиках, футлярах.

3.7. Перед сверлением проверить надежность крепления сверла в патроне.

3.8. Подавать инструмент, имеющий острые и колющие поверхности так, чтобы принимающий инструмент мог взять его за рукоятку.

3.9. Не оставлять при перерывах в работе инструмент в рабочем положении, укладывать его в сумку, футляр, ящик или уложить так, чтобы он не мог при падении, случайном касании нанести травму.

3.10. Не прерывать работу по установке конструкций или из частей до тех пор, пока они не будут прочно закреплены постоянными или временными связями (струбцинами).

3.11. Применять испытанный предохранительный пояс или привязываться страховочным канатом, закрепляя их надежно к части здания или конструкции: при установке и монтаже всех конструкций.

3.12. При выполнении малярных работ следует помнить, что вследствие невыполнения требований, изложенных в инструкции по охране труда. Правилах внутреннего трудового распорядка, ППБ и ПТБ, при проведении работ могут возникнуть опасности:

  • поражения электрическим током;
  • отравления организма парами красок;
  • падения с высоты;
  • травмирования.

3.13. Монтажник пластиковых и алюминиевых окон обязан:

  • выполнять инструкцию по охране труда, правила внутреннего трудового распорядка, указания мастера (прораба);
  • применять спецодежду и другие средства индивидуальной защиты по назначению;
  • не допускать на рабочее место посторонних лиц;
  • уметь оказывать доврачебную помощь пострадавшим;
  • выполнять только ту работу, по которой прошел обучение стажировку;
  • выполнять требования знаков безопасности;
  • не заходить за ограждения опасных зон;
  • быть внимательным к предупреждающим сигналам грузоподъемных машин, автомашин и других видов движущегося транспорта;
  • сообщать мастеру (прорабу) о замеченных неисправностях электрооборудования (нарушена изоляция или оторваны провода, разбита арматура светильников, открыт или поломан электрораспределительный щит и др. и других нарушениях требований безопасности, а также о несчастных случаях на участке;
  • уметь пользоваться средствами пожаротушения (огнетушителями внутренним пожарным краном); при возникновении пожара вызвать пожарную команду (по телефону, пожарными извещателями и т. п.) и участвовать ликвидации пожара.

4. Требования безопасности в аварийных ситуациях

4.1. При замеченных неисправностях применяемого инструмента и оборудования или создания аварийной обстановки при выполнении работ плотник обязан:

a) прекратить работу;

b) предупредить работающих об опасности;

c) поставить в известность начальника подразделения и способствовать устранению аварийных ситуаций, а также их расследованию в целях разработки противоаварийных мероприятий;

d) производить устранение самых неотложных неисправностей ее строгим соблюдением требований безопасности, изложенных в инструкции по охране труда;

e) при несчастных случаях с людьми оказать им доврачебную помощь. Немедленно поставить в известность начальника подразделения, сохранить обстановку, при которой произошел несчастный случай.

5. Требования безопасности по окончании работ

5.1. Оборудование отключить от сети, обмахнуть щеткой - сметкой, отдельные части протереть тряпкой. Инструмент и приспособления промыть, протереть и сложить в отведенное для них место.

5.2. Привести в порядок рабочее место. Убрать отходы, мусор.

5.3. Сообщить руководителю о всех неисправностях и недостатках, замеченных во время работы и о принятых мерах по их устранению.

5.4. Снять и привести в порядок средства индивидуальной защиты и другие используемые средства защиты.

5.5. Вымыть руки и лицо теплой водой с мылом, прополоскать рот, по возможности принять душ. Применять для мытья химические вещества запрещается.

Смотрите другие статьи раздела .

Стирол, а также мономеры, применяемые при получении сополимеров стирола, являются взрыво- и пожароопасными веществами. Стирол образует с воздухом взрывоопасные смеси при концентрации 1,1-6,2 объемных %, кроме того, он токсичен. Его пары вызывают раздражение, а также ведут к заболеваниям пищеварительной системы и особенно печени. При попадании стирола в рот, необходимо срочно принять рвотное средство и обратиться к врачу. Предельно допустимая в воздухе концентрация паров стирола равна 0,5 мг/куб м. Производственные помещении должны быть оснащены эффективной вентиляцией,

Стирол следует хранить в композиции с ингибитором и при низкой температуре, так как самопроизвольная полимеризация не только осложняет его дальнейшее использование, но и может привести к перегреву и как следствие к взрыву.

Полистирол, не содержащий физиологически активных примесей, безвреден.

Маточный раствор и промывные воды, получаемые при синтезе эмульсионного и суспензионного полистирола, необходимо направлять на нейтрализацию в очистные установки.

Пыль полистирола и сополимеров стирола может образовывать взрывоопасные смеси с воздухом. Электрические устройства и двигатели, эксплуатируемые в цехах, должны быть изготовлены во взрывобезопасном исполнении, а все трубопроводы заземлены.

Литература:

Бранцхин E.А., Шульгина Э.С. Технология пластических масс. Л. Химия, 1974
Николаев А. Л. Технология изготовления изделий из пластмасс Л, Химия, 1965

Объявления о покупке и продаже оборудования можно посмотреть на

Обсудить достоинства марок полимеров и их свойства можно на

Зарегистрировать свою компанию в Каталоге предприятий




Top