Функцией клеточной мембраны не является. Какие функции выполняет наружная клеточная мембрана? Строение наружной клеточной мембраны

Клеточная мембрана - это оболочка клетки, выполняющая следующие функции: разделение содержимого клетки и внешней среды, избирательный транспорт веществ (обмен с внешней для клетки средой), место протекания некоторых биохимических реакций, объединение клеток в ткани и рецепция.

Клеточные мембраны подразделяют на плазматические (внутриклеточные) и наружные. Основное свойство любой мембраны - полупроницаемость, то есть способность пропускать только определенные вещества. Это позволяет осуществлять избирательный обмен между клеткой и внешней средой или обмен между компартментами клетки.

Плазматические мембраны - это липопротеиновые структуры. Липиды спонтанно образуют бислой (двойной слой), а мембранные белки «плавают» в нем. В мембранах присутствует несколько тысяч различных белков: структурные, переносчики, ферменты и др. Между белковыми молекулами имеются поры, сквозь которые проходят гидрофильные вещества (непосредственному их проникновению в клетку мешает липидный бислой). К некоторым молекулам на поверхности мембраны присоединены гликозильные группы (моносахариды и полисахариды), которые участвуют в процессе распознавания клеток при образовании тканей.

Мембраны отличаются по своей толщине, обычно она составляет от 5 до 10 нм. Толщина определяется размерами молекулы амфифильного липида и составляет 5,3 нм. Дальнейшее увеличение толщины мембраны обусловлено размерами мембранных белковых комплексов. В зависимости от внешних условий (регулятором является холестерол) структура бислоя может изменяться так, что он становится более плотным или жидким - от этого зависит скорость перемещения веществ вдоль мембран.

К клеточным мембранам относят: плазмолемму, кариолемму, мембраны эндоплазматической сети, аппарата Гольджи, лизосом, пероксисом, митохондрий, включений и т. д.

Липиды не растворимы в воде (гидрофобность), но хорошо растворяются в органических растворителях и жирах (липофильность). Состав липидов в разных мембранах неодинаков. Например, плазматическая мембрана содержит много холестерина. Из липидов в мембране чаще всего встречаются фосфолипиды (глицерофосфатиды), сфингомиелины (сфинголипиды), гликолипиды и холестерин.

Фосфолипиды, сфингомиелины, гликолипиды состоят из двух функционально различных частей: гидрофобной неполярной, которая не несет зарядов - «хвосты», состоящие из жирных кислот, и гидрофильной, содержащей заряженные полярные «головки» - спиртовые группы (например, глицерин).

Гидрофобная часть молекулы обычно состоит из двух жирных кислот. Одна из кислот предельная, а вторая непредельная. Это определяет способность липидов самопроизвольно образовывать двухслойные (билипидные) мембранные структуры. Липиды мембран выполняют следующие функции: барьерную, транспортную, микроокружение белков, электрическое сопротивление мембраны.

Мембраны отличаются друг от друга набором белковых молекул. Многие мембранные белки состоят из участков, богатых полярными (несущими заряд) аминокислотами, и участков с неполярными аминокислотами (глицином, аланином, валином, лейцином). Такие белки в липидных слоях мембран располагаются так, что их неполярные участки как бы погружены в «жирную» часть мембраны, где находятся гидрофобные участки липидов. Полярная (гидрофильная) же часть этих белков взаимодействует с головками липидов и обращена в сторону водной фазы.

Биологические мембраны обладают общими свойствами :

мембраны - замкнутые системы, которые не позволяют содержимому клетки и ее компартментов смешиваться. Нарушение целостности мембраны может привести к гибели клетки;

поверхностная (плоскостная, латеральная) подвижность. В мембранах идет непрерывное перемещение веществ по поверхности;

асимметрия мембраны. Строение наружного и поверхностного слоев химически, структурно и функционально неоднородно.

Мембраны выполняют большое число различных функций:

мембраны определяют форму органеллы или клетки;

барьерная : контролируют обмен растворимых веществ (например, ионов Na + , K + , Cl -) между внутренним и наружным компартментом;

энергетическая : синтез АТФ на внутренних мембранах митохондрий и фотосинтез в мембранах хлоропластов; формируют поверхность для протекания химических реакций (фосфорилирование на митохондриальных мембранах);

являются структурой, обеспечивающей распознавание химических сигналов (на мембране расположены рецепторы гормонов и нейромедиаторов);

играют роль в межклеточном взаимодействии и способствуют передвижению клеток.

Транспорт через мембрану. Мембрана обладает избирательной проницаемостью для растворимых веществ, что необходимо для:

отделения клетки от внеклеточной среды;

обеспечения проникновения в клетку и удержания в ней необходимых молекул (таких, как липиды, глюкоза и аминокислоты), а также удаления из клетки продуктов метаболизма (в том числе ненужных);

поддержания трансмембранного градиента ионов.

Внутриклеточные органеллы также могут обладать избирательно проницаемой мембраной. Например, в лизосомах мембрана поддерживает концентрацию ионов водорода (Н +) в 1000-10000 раз больше, чем в цитозоле.

Транспорт через мембрану может быть пассивным , облегченным или активным .

Пассивный транспорт - это движение молекул или ионов по концентрационному либо электрохимическому градиенту. Это может быть простая диффузия, как в случае проникновения через плазматическую мембрану газов (например О 2 и СО 2) или простых молекул (этанола). При простой диффузии растворенные во внеклеточной жидкости небольшие молекулы последовательно растворяются в мембране и затем во внутриклеточной жидкости. Указанный процесс неспецифичен, при этом скорость проникновения через мембрану определяется степенью гидрофобности молекулы, то есть ее жирорастворимостью. Скорость диффузии через липидный бислой прямо пропорциональна гидрофобности, а также трансмембранному градиенту концентрации или электрохимическому градиенту.

Облегченная диффузия - это быстрое движение молекул через мембрану с помощью специфических мембранных белков, называемых пермеазами. Этот процесс специфичен, он протекает быстрее простой диффузии, но имеет ограничение скорости транспорта.

Облегченная диффузия обычно характерна для водорастворимых веществ. Большинство (если не все) мембранных переносчиков являются белками. Конкретный механизм функционирования переносчиков при облегченной диффузии исследован недостаточно. Они могут, например, обеспечивать перенос путем вращательного движения в мембране. В последнее время появились сведения, что белки-переносчики при контакте с транспортируемым веществом изменяют свою конформацию, в результате в мембране открываются своеобразные «ворота», или каналы. Эти изменения происходят за счет энергии, высвобождающейся при связывании транспортируемого вещества с белком. Возможен также перенос эстафетного типа. В этом случае сам переносчик остается неподвижным, а ионы мигрируют вдоль него от одной гидрофильной связи к другой.

Моделью переносчика такого типа может служить антибиотик грамицидин. В липидном слое мембраны его длинная линейная молекула принимает форму спирали и образует гидрофильный канал, по которому может мигрировать по градиенту ион К.

Получены экспериментальные доказательства существования природных каналов в биологических мембранах. Транспортные белки отличаются высокой специфичностью по отношению к переносимому через мембрану веществу, по многим свойствам напоминая ферменты. Они обнаруживают большую чувствительность к рН, конкурентно ингибируются соединениями, близкими по структуре к переносимому веществу, и неконкурентно - агентами, изменяющими специфически функциональные группы белков.

Облегченная диффузия отличается от обычной не только скоростью, но и способностью к насыщению. Увеличение скорости переноса веществ происходит пропорционально росту градиента концентрации только до определенных пределов. Последний определяется «мощностью» переносчика.

Активный транспорт - это движение ионов или молекул через мембрану против градиента концентрации за счет энергии гидролиза АТФ. Имеются три основных типа активного транспорта ионов:

натрий-калиевый насос - Na + /K + -аденозинтрифосфатаза (АТФаза), переносящая Na + наружу, а K + внутрь;

кальциевый (Са 2+) насос - Са 2+ -АТФаза, которая транспортирует Са 2+ из клетки или цитозоля в саркоплазматический ретикулум;

протонный насос - Н + -АТФаза. Созданные активным транспортом градиенты ионов могут быть использованы для активного транспорта других молекул - таких, как некоторые аминокислоты и сахара (вторичный активный транспорт).

Котранспорт - это транспорт иона или молекулы, сопряженный с переносом другого иона. Симпорт - одновременный перенос обеих молекул в одном направлении; антипорт - одновременный перенос обеих молекул в противоположных направлениях. Если транспорт не сопряжен с переносом другого иона, этот процесс называется унипортом . Котранспорт возможен как при облегченной диффузии, так и в процессе активного транспорта.

Глюкоза может транспортироваться путем облегченной диффузии по типу симпорта. Ионы Cl - и HCO 3 - транспортируются через мембрану эритроцитов путем облегченной диффузии переносчиком, называемым полосой 3, по типу антипорта. При этом Cl - и HCO 3 - переносятся в противоположных направлениях, а направление переноса определяется преобладающим градиентом концентрации.

Активный транспорт ионов против градиента концентрации требует энергии, выделяемой при гидролизе АТФ до АДФ: АТФ АДФ + Ф (неорганический фосфат). Для активного транспорта, как и для облегченной диффузии, характерны: специфичность, ограничение максимальной скорости (то есть кинетическая кривая выходит на плато) и наличие ингибиторов. В качестве примера можно привести первичный активный транспорт, осуществляемый Na + /K + - АТФазой. Для функционирования этой фрментной системы антипорта необходимо наличие Na + , K + и ионов магния. Она присутствует практически во всех клетках животных, причем ее концентрация особенно высока в возбудимых тканях (например, в нервах и мышцах) и в клетках, принимающих активное участие в движении осуществляемый Na + через плазматическую мембрану (например, в корковом слое почек и слюнных железах).

Сам фермент АТФаза представляет собой олигомер, состоящий из 2 -субъедениц по 110 кД и 2 гликопротеиновых -субъдениц по 55 кД каждая.. при гидролизе АТФ происходит обратимое фосфорилирование определенного остатка аспартата на -субъеденице с образованием -аспартамилфосфата.. Для фосфорилирования необходимы Na + и Мg 2+ , но не K + , тогда как для дефосфорилирования необходим K + , но не Na + или Мg 2+ . Описаны два конформационных состояния белкового комплекса с различным энергетическим уровнем, которые принято обозначать Е 1 и Е 2 , поэтому АТФазу называют также переносчиком типа Е 1 - Е 2 . Сердечные гликозиды, например дигоксин и уабаин , подавляют активность АТФазы.. Уабаин вследствие хорпошой растворимости в воде широко применяют в экспериментальных исследованиях для изучения натриевого насоса.

Общепринятое представлени о работе Na + /K + - АТФазой, сводится к следующему. Ионы Na и АТФ присоединяются к молекуле АТФазы в присутствии Мg 2+ . Связывание ионов Na запускает реакцию гидролиза АТФ, в результате которой образуются АДФ и фосфорилированная форма фермента. Фосфорилирование индуцирует переход ферментативного белка в новое конформационное состояние и участок или участки, несущие Na, оказываются обращенными к внешней среде. Здесь Na + обменивается на K + , так как для фосфорилированной формы ферментахарактерно высокое сродство к ионам К. обратный переход фермента в исходную конформацию инициируется гидролитическим отщеплением фосфорильной группы в виде неорганического фосфата и сопровождается освобождением K + во внутреннее пространство клетки. Дефосфорилированный активный центр фермента способен присоединить новую молекулу АТФ, и цикл повторяется.

Количества поступивших в клетку в результате работы насоса ионов К и Na не равны между собой. На три выведенных иона Na приходится два введенных иона К при одновременном гидролизе одной молекулы АТФ. Открывание и закрывание канала на противоположных сторонах мембраны и чередующееся изменение эффективности связывания Na и К обеспечиваются энергией гидролиза АТФ. Транспортируемые ионы - Na и К - кофакторы данной ферментативной реакции. Теоретически можно представить самые различные насосы, действующие по этому принципу, хотя в настоящее время известны лишь немногие из них.

Транспорт глюкозы. Транспорт глюкозы может происходить по типу как облегченной диффузии, так и активного транспорта, причем в первом случае он протекает как унипорт, во втором - как симпорт. Глюкоза может транспортироваться в эритроциты путем облегченной диффузии. Константа Михаэлиса (К m) для транспорта глюкозы в эритроциты составляет приблизительно 1,5 ммоль/л (то есть при этой концентрации глюкозы около 50% имеющихся молекул пермеазы будет связано с молекулами глюкозы). Поскольку концентрация глюкозы в крови человека составляет 4-6 ммоль/л, поглощение ее эритроцитами происходит практически с максимальной скоростью. Специфичность пермеазы проявляется уже в том, что L-изомер почти не транспортируется в эритроциты в отличие от D-галактозы и D-маннозы, но для достижения полунасыщения транспортной системы требуются более высокие их концентрации. Оказавшись внутри клетки, глюкоза подвергается фосфорилированию и более не способна покинуть клетку. Пермеазу для глюкозы называют также D-гексозной пермеазой. Она представляет собой интегральный мембранный белок с молекулярной массой 45кД.

Глюкоза может также транспортироваться Na + -зависимой системой симпорта, обнаруженной в плазматических мембранах ряда тканей, в том числе в канальцах почек и эпителии кишечника. При этом одна молекула глюкозы переносится путем облегченной диффузии против градиента концентрации, а один ион Na - по градиенту концентрации. Вся система в конечном счете функционирует за счет насосной функции Na + /K + - АТФазы. Таким образом, симпорт является вторичной системой активного транспорта. Аминокислоты транспортируются аналогичным образом.

Ca 2+ -насос представляет собой систему активного транспорта типа Е 1 - Е 2 , состоящую из интегрального мембранного белка, который в процессе переноса Ca 2+ фосфорилируется по остатку аспартата. При гидролизе каждой молекулы АТФ происходит перенос двух ионов Ca 2+ . В эукариотических клетках Ca 2+ может связываться с кальцийсвязывающим белком, называемым кальмодулином , и весь комплекс связывается с Ca 2+ -насосом. К Ca 2+ -связывающим белкам отнсятся также тропонин С и парвальбумин.

Ионы Са, подобно ионам Na, активно выводятся из клеток Ca 2+ -АТФазой. Особенно большое количество белка кальциевого насоса содержат мембраны эндоплазматического ретикулума. Цепь химических реакций, ведущих к гидролизу АТФ и перебросу Ca 2+ , может быть записана в виде следующих уравнений:

2Са н + АТФ + Е 1 Са 2 - Е - Р + АДФ

Са 2 - Е - Р 2Са вн + PO 4 3- + Е 2

Где Сан - Ca2+ , находящийся снаружи;

Са вн - Ca 2+ , находящийся внутри;

Е 1 и Е 2 - различные конформации фермента переносчика, переход которых из одной в другую связан с использованием энергии АТФ.

Система активного вывода Н + из цитоплазмы поддерживается двумя типами реакций: деятельностью электрон-транспортной цепи (редокс-цепи) и гидролизом АТФ. Оба - и редокс- и гидролитический Н + -насосы - находятся в мембранах, способных превращать световую или химическую энергию в энергию Н + (то есть плазматических мембранах прокариот, сопрягающих мембранах хлоропластов и митохондрий). В результате работы Н + АТФазы и/или редокс-цепи транслоцируются протоны, и на мембране возникает протондвижущая сила (Н +). Электрохимический градиент ионов водорода, как показывают исследования, может быть использован для сопряженного транспорта (вторичный активный транспорт) большого числа метаболитов - анионов, аминокислот, сахаров и т.д.

С активностью плазматической мембраны связаны обеспечивающие поглощение клеткой твердых и жидких веществ с большой молекулярной массой, - фагоцитоз и пиноцитоз (от герч. фагос - есть, пинос - пить, цитос - клетка). Клеточная мембрана образует карманы, или впячивания, которые втягивают вещества извне. Затем такие впячивания отшнуровываются и окружают мембраной капельку внешней среды (пиноцитоз) или твердые частицы (фагоцитоз). Пиноцитоз наблюдается в самых разнообразных клетках, особенно в тех органах, где происходят процессы всасывания.

Основная структурная единица живого организма - клетка, являющаяся дифференцированным участком цитоплазмы, окруженным клеточной мембраной. Ввиду того что клетка выполняет множество важнейших функций, таких, как размножение, питание, движение, оболочка должна быть пластичной и плотной.

История открытия и исследования клеточной мембраны

В 1925 году Гренделем и Гордером был поставлен успешный эксперимент по выявлению «теней» эритроцитов, или пустых оболочек. Несмотря на несколько допущенных грубых ошибок, учеными было произведено открытие липидного бислоя. Их труды продолжили Даниэлли, Доусон в 1935 году, Робертсон в 1960 году. В результате многолетней работы и накопления аргументов в 1972 году Сингер и Николсон создали жидкостно-мозаичную модель строения мембраны. Дальнейшие опыты и исследования подтвердили труды ученых.

Значение

Что же представляет собой клеточная мембрана? Это слово стало использоваться более ста лет назад, в переводе с латинского оно означает «пленка», «кожица». Так обозначают границу клетки, являющуюся естественным барьером между внутренним содержимым и внешней средой. Строение клеточной мембраны предполагает полупроницаемость, благодаря которой влага и питательные вещества и продукты распада свободно могут проходить сквозь нее. Эту оболочку можно назвать основной структурной составляющей организации клетки.

Рассмотрим основные функции клеточной мембраны

1. Разделяет внутреннее содержимое клетки и компоненты внешней среды.

2. Способствует поддержанию постоянного химического состава клетки.

3. Регулирует правильный обмен веществ.

4. Обеспечивает взаимосвязь между клетками.

5. Распознает сигналы.

6. Функция защиты.

"Плазменная оболочка"

Наружная клеточная мембрана, называемая также плазменной, представляет собой ультрамикроскопическую пленку, толщина которой составляет от пяти до семи наномиллиметров. Она состоит преимущественно из белковых соединений, фосфолидов, воды. Пленка является эластичной, легко впитывает воду, а также стремительно восстанавливает свою целостность после повреждений.

Отличается универсальным строением. Эта мембрана занимает пограничное положение, участвует в процессе избирательной проницаемости, выведении продуктов распада, синтезирует их. Взаимосвязь с «соседями» и надежная защита внутреннего содержимого от повреждения делает ее важной составляющей в таком вопросе, как строение клетки. Клеточная мембрана животных организмов иногда оказывается покрытой тончайшим слоем - гликокаликсом, в состав которого входят белки и полисахариды. Растительные клетки снаружи от мембраны защищены клеточной стенкой, выполняющей функции опоры и поддержания формы. Основной компонент ее состава - это клетчатка (целлюлоза) - полисахарид, не растворимый в воде.

Таким образом, наружная клеточная мембрана выполняет функцию восстановления, защиты и взаимодействия с другими клетками.

Строение клеточной мембраны

Толщина этой подвижной оболочки варьируется в пределах от шести до десяти наномиллиметров. Клеточная мембрана клетки имеет особый состав, основой которого служит липидный бислой. Гидрофобные хвосты, инертные к воде, размещены с внутренней стороны, в то время как гидрофильные головки, взаимодействующие с водой, обращены наружу. Каждый липид представляет фосфолипид, который является результатом взаимодействия таких веществ, как глицерин и сфингозин. Липидный каркас тесно окружают белки, которые расположены несплошным слоем. Некоторые из них погружены в липидный слой, остальные проходят сквозь него. В результате этого образуются проницаемые для воды участки. Выполняемые этими белками функции различны. Некоторые из них являются ферментами, остальные - транспортными белками, которые переносят различные вещества из внешней среды на цитоплазму и обратно.

Клеточная мембрана насквозь пронизана и тесно связана интегральными белками, а с переферическими связь менее прочная. Эти белки выполняют важную функцию, которая заключается в поддержании структуры мембраны, получении и преобразовании сигналов из окружающей среды, транспорте веществ, катализации реакций, которые происходят на мембранах.

Состав

Основу клеточной мембраны представляет бимолекулярный слой. Благодаря его непрерывности клетка имеет барьерное и механическое свойства. На разных этапах жизнедеятельности данный бислой может нарушиться. Вследствие этого образуются структурные дефекты сквозных гидрофильных пор. В таком случае могут изменяться абсолютно все функции такой составляющей, как клеточная мембрана. Ядро при этом может пострадать от внешних воздействий.

Свойства

Клеточная мембрана клетки имеет интересные особенности. Благодаря текучести эта оболочка не является жесткой структурой, а основная часть белков и липидов, которые входят в ее состав, свободно перемещается на плоскости мембраны.

В целом клеточная мембрана асимметрична, поэтому состав белковых и липидных слоев различается. Плазматические мамбраны в животных клетках со своей наружной стороны имеют гликопротеиновый слой, который выполняет рецепторные и сигнальные функции, а также играет большую роль в процессе объединения клеток в ткань. Клеточная мембрана является полярной, то есть на внешней стороне заряд положителен, а с внутренней стороны - отрицателен. Помимо всего перечисленного, оболочка клетки обладает избирательной проницательностью.

Это означает, что кроме воды в клетку пропускается только определенная группа молекул и ионов растворившихся веществ. Концентрация такого вещества, как натрий, в большинстве клеток значительно ниже, чем во внешней среде. Для ионов калия характерно другое соотношение: их количество в клетке намного выше, чем в окружающей среде. В связи с этим ионам натрия присуще стремление проникнуть в клеточную оболочку, а ионы калия стремятся освободиться наружу. При данных обстоятельствах мембрана активизирует особую систему, выполняющую «насосную» роль, выравнивая концентрацию веществ: ионы натрия откачиваются на поверхность клетки, а ионы калия накачиваются внутрь. Данная особенность входит в важнейшие функции клеточной мембраны.

Подобное стремление ионов натрия и калия переместиться внутрь с поверхности играет большую роль в вопросе транспортировки сахара и аминокислот в клетку. В процессе активного удаления ионов натрия из клетки мембрана создает условия для новых поступлений глюкозы и аминокислот внутрь. Напротив, в процессе переноса ионов калия внутрь клетки пополняется число "транспортировщиков" продуктов распада изнутри клетки во внешнюю среду.

Как происходит питание клетки через клеточную мембрану?

Многие клетки поглощают вещества посредством таких процессов, как фагоцитоз и пиноцитоз. При первом варианте гибкой наружной мембраной создается маленькое углубление, в котором оказывается захватываемая частица. Затем диаметр углубления становится больше, пока окруженная частица не попадет в клеточную цитоплазму. Посредством фагоцитоза подпитываются некоторые простейшие, например амебы, а также кровяные тельца - лейкоциты и фагоциты. Аналогичным образом клетки поглощают жидкость, которая содержит необходимые полезные вещества. Такое являние носит название пиноцитоз.

Наружная мембрана тесно соединена с эндоплазматической сетью клетки.

У многих типов основных составляющих ткани на поверхности мембраны расположены выступы, складки, микроворсинки. Растительные клетки снаружи этой оболочки покрыты еще одной, толстой и отчетливо различимой в микроскоп. Клетчатка, из которой они состоят, помогает формировать опору тканям растительного происхождения, например, древесину. Клетки животных также обладают рядом внешних структур, которые находятся поверх клеточной мембраны. Они носят исключительно защитный характер, пример тому - хитин, содержащийся в покровных клетках насекомых.

Помимо клеточной, существует внутриклеточная мембрана. Ее функция заключается в разделении клетки на несколько специализированных замкнутых отсеков - компартментов или органелл, где должна поддерживаться определенная среда.

Таким образом, невозможно переоценить роль такой составляющей основной единицы живого организма, как клеточная мембрана. Строение и функции предполагают значительное расширение общей площади поверхности клетки, улучшение обменных процессов. В состав этой молекулярной структуры входят белки и липиды. Отделяя клетку от внешней среды, мембрана обеспечивает ее целостность. С ее помощью межклеточные связи поддерживаются на достаточно крепком уровне, образовывая ткани. В связи с этим можно сделать вывод, что одну из важнейших ролей в клетке играет клеточная мембрана. Строение и функции, выполняемые ею, радикально отличаются в различных клетках, в зависимости от их предназначения. Посредством этих особенностей достигается разнообразие физиологической активности клеточных оболочек и их ролей в существовании клеток и тканей.

Основная структурная единица живого организма - клетка, являющаяся дифференцированным участком цитоплазмы, окруженным клеточной мембраной. Ввиду того что клетка выполняет множество важнейших функций, таких, как размножение, питание, движение, оболочка должна быть пластичной и плотной.

История открытия и исследования клеточной мембраны

В 1925 году Гренделем и Гордером был поставлен успешный эксперимент по выявлению «теней» эритроцитов, или пустых оболочек. Несмотря на несколько допущенных грубых ошибок, учеными было произведено открытие липидного бислоя. Их труды продолжили Даниэлли, Доусон в 1935 году, Робертсон в 1960 году. В результате многолетней работы и накопления аргументов в 1972 году Сингер и Николсон создали жидкостно-мозаичную модель строения мембраны. Дальнейшие опыты и исследования подтвердили труды ученых.

Значение

Что же представляет собой клеточная мембрана? Это слово стало использоваться более ста лет назад, в переводе с латинского оно означает «пленка», «кожица». Так обозначают границу клетки, являющуюся естественным барьером между внутренним содержимым и внешней средой. Строение клеточной мембраны предполагает полупроницаемость, благодаря которой влага и питательные вещества и продукты распада свободно могут проходить сквозь нее. Эту оболочку можно назвать основной структурной составляющей организации клетки.

Рассмотрим основные функции клеточной мембраны

1. Разделяет внутреннее содержимое клетки и компоненты внешней среды.

2. Способствует поддержанию постоянного химического состава клетки.

3. Регулирует правильный обмен веществ.

4. Обеспечивает взаимосвязь между клетками.

5. Распознает сигналы.

6. Функция защиты.

"Плазменная оболочка"

Наружная клеточная мембрана, называемая также плазменной, представляет собой ультрамикроскопическую пленку, толщина которой составляет от пяти до семи наномиллиметров. Она состоит преимущественно из белковых соединений, фосфолидов, воды. Пленка является эластичной, легко впитывает воду, а также стремительно восстанавливает свою целостность после повреждений.

Отличается универсальным строением. Эта мембрана занимает пограничное положение, участвует в процессе избирательной проницаемости, выведении продуктов распада, синтезирует их. Взаимосвязь с «соседями» и надежная защита внутреннего содержимого от повреждения делает ее важной составляющей в таком вопросе, как строение клетки. Клеточная мембрана животных организмов иногда оказывается покрытой тончайшим слоем - гликокаликсом, в состав которого входят белки и полисахариды. Растительные клетки снаружи от мембраны защищены клеточной стенкой, выполняющей функции опоры и поддержания формы. Основной компонент ее состава - это клетчатка (целлюлоза) - полисахарид, не растворимый в воде.

Таким образом, наружная клеточная мембрана выполняет функцию восстановления, защиты и взаимодействия с другими клетками.

Строение клеточной мембраны

Толщина этой подвижной оболочки варьируется в пределах от шести до десяти наномиллиметров. Клеточная мембрана клетки имеет особый состав, основой которого служит липидный бислой. Гидрофобные хвосты, инертные к воде, размещены с внутренней стороны, в то время как гидрофильные головки, взаимодействующие с водой, обращены наружу. Каждый липид представляет фосфолипид, который является результатом взаимодействия таких веществ, как глицерин и сфингозин. Липидный каркас тесно окружают белки, которые расположены несплошным слоем. Некоторые из них погружены в липидный слой, остальные проходят сквозь него. В результате этого образуются проницаемые для воды участки. Выполняемые этими белками функции различны. Некоторые из них являются ферментами, остальные - транспортными белками, которые переносят различные вещества из внешней среды на цитоплазму и обратно.

Клеточная мембрана насквозь пронизана и тесно связана интегральными белками, а с переферическими связь менее прочная. Эти белки выполняют важную функцию, которая заключается в поддержании структуры мембраны, получении и преобразовании сигналов из окружающей среды, транспорте веществ, катализации реакций, которые происходят на мембранах.

Состав

Основу клеточной мембраны представляет бимолекулярный слой. Благодаря его непрерывности клетка имеет барьерное и механическое свойства. На разных этапах жизнедеятельности данный бислой может нарушиться. Вследствие этого образуются структурные дефекты сквозных гидрофильных пор. В таком случае могут изменяться абсолютно все функции такой составляющей, как клеточная мембрана. Ядро при этом может пострадать от внешних воздействий.

Свойства

Клеточная мембрана клетки имеет интересные особенности. Благодаря текучести эта оболочка не является жесткой структурой, а основная часть белков и липидов, которые входят в ее состав, свободно перемещается на плоскости мембраны.

В целом клеточная мембрана асимметрична, поэтому состав белковых и липидных слоев различается. Плазматические мамбраны в животных клетках со своей наружной стороны имеют гликопротеиновый слой, который выполняет рецепторные и сигнальные функции, а также играет большую роль в процессе объединения клеток в ткань. Клеточная мембрана является полярной, то есть на внешней стороне заряд положителен, а с внутренней стороны - отрицателен. Помимо всего перечисленного, оболочка клетки обладает избирательной проницательностью.

Это означает, что кроме воды в клетку пропускается только определенная группа молекул и ионов растворившихся веществ. Концентрация такого вещества, как натрий, в большинстве клеток значительно ниже, чем во внешней среде. Для ионов калия характерно другое соотношение: их количество в клетке намного выше, чем в окружающей среде. В связи с этим ионам натрия присуще стремление проникнуть в клеточную оболочку, а ионы калия стремятся освободиться наружу. При данных обстоятельствах мембрана активизирует особую систему, выполняющую «насосную» роль, выравнивая концентрацию веществ: ионы натрия откачиваются на поверхность клетки, а ионы калия накачиваются внутрь. Данная особенность входит в важнейшие функции клеточной мембраны.

Подобное стремление ионов натрия и калия переместиться внутрь с поверхности играет большую роль в вопросе транспортировки сахара и аминокислот в клетку. В процессе активного удаления ионов натрия из клетки мембрана создает условия для новых поступлений глюкозы и аминокислот внутрь. Напротив, в процессе переноса ионов калия внутрь клетки пополняется число "транспортировщиков" продуктов распада изнутри клетки во внешнюю среду.

Как происходит питание клетки через клеточную мембрану?

Многие клетки поглощают вещества посредством таких процессов, как фагоцитоз и пиноцитоз. При первом варианте гибкой наружной мембраной создается маленькое углубление, в котором оказывается захватываемая частица. Затем диаметр углубления становится больше, пока окруженная частица не попадет в клеточную цитоплазму. Посредством фагоцитоза подпитываются некоторые простейшие, например амебы, а также кровяные тельца - лейкоциты и фагоциты. Аналогичным образом клетки поглощают жидкость, которая содержит необходимые полезные вещества. Такое являние носит название пиноцитоз.

Наружная мембрана тесно соединена с эндоплазматической сетью клетки.

У многих типов основных составляющих ткани на поверхности мембраны расположены выступы, складки, микроворсинки. Растительные клетки снаружи этой оболочки покрыты еще одной, толстой и отчетливо различимой в микроскоп. Клетчатка, из которой они состоят, помогает формировать опору тканям растительного происхождения, например, древесину. Клетки животных также обладают рядом внешних структур, которые находятся поверх клеточной мембраны. Они носят исключительно защитный характер, пример тому - хитин, содержащийся в покровных клетках насекомых.

Помимо клеточной, существует внутриклеточная мембрана. Ее функция заключается в разделении клетки на несколько специализированных замкнутых отсеков - компартментов или органелл, где должна поддерживаться определенная среда.

Таким образом, невозможно переоценить роль такой составляющей основной единицы живого организма, как клеточная мембрана. Строение и функции предполагают значительное расширение общей площади поверхности клетки, улучшение обменных процессов. В состав этой молекулярной структуры входят белки и липиды. Отделяя клетку от внешней среды, мембрана обеспечивает ее целостность. С ее помощью межклеточные связи поддерживаются на достаточно крепком уровне, образовывая ткани. В связи с этим можно сделать вывод, что одну из важнейших ролей в клетке играет клеточная мембрана. Строение и функции, выполняемые ею, радикально отличаются в различных клетках, в зависимости от их предназначения. Посредством этих особенностей достигается разнообразие физиологической активности клеточных оболочек и их ролей в существовании клеток и тканей.




Top