Космоснимки из космоса мониторинг пожаров. «Космоснимки – Пожары» – мониторинг природных пожаров. Е.И.: «Космоснимки» – это некоммерческий проект

Космический мониторинг – это система регулярных наблюдений и контроля состояния территории, анализа происходящих на ней процессов и своевременного выявления тенденций, имеющих место изменений средствами космического базирования.

Методы дистанционного зондирования Земли (ДЗЗ), существующие в настоящее время, позволяют проводить контроль только объектов, различающихся между собой по спектральной отражательной способности хотя бы в одном диапазоне длин волн и имеющих размеры, сравнимые с пространственным разрешением съемочной аппаратуры. На космических снимках, которые получаются в оперативном режиме, наблюдаются следующие объекты: лесные массивы и пожары, сельскохозяйственные угодья с посевами, пастбища, открытые поверхности почвы, населенные пункты и промышленные зоны, дороги, водоемы, снежный и ледовый покров, облачный покров. Методы ДЗЗ позволяют оперативно проводить анализ изменений, происходящих с перечисленными объектами во времени и пространстве, выявлять катастрофические изменения, происходящие с этими объектами в результате , и стихийных бедствий, решать задачи в разных областях народного хозяйства на основе этой информации. Следует отметить, что методами космического мониторинга невозможно регистрировать техногенные аварии и катастрофы, если они не влекут за собой площадные загрязнения или не сопровождаются сильным пожаром.

К задачам, решаемым с помощью космического мониторинга, можно отнести:

  • обнаружение , аварий на нефтяных вышках и промышленных объектах, сопровождающихся пожарами;
  • выявление последствий пожаров, в том числе лесных гарей и ущерба от пожаров;
  • мониторинг паводковой обстановки на реках, контроль половодий, наводнений, имеющих разное происхождение (дожди, таяние снега, последствия землетрясений, аварии на гидроэлектростанциях и т.д.), контроль ледовой обстановки при прохождении паводка на реках;
  • обнаружение и выбросы загрязняющих веществ в водоемы и моря;
  • выбросы загрязняющих веществ в атмосферу городов и промышленных зон, задымленность городов и населенных пунктов в результате лесных, степных и торфяных пожаров;
  • выявление сельскохозяйственных зон, подверженных засухе;
  • контроль вырубки лесных массивов;
  • контроль распространения загрязняющих веществ вокруг промышленных зон, на нефтепромыслах;
  • слежение за таянием горных ледников;
  • обнаружение и контроль схода селей;
  • выявление и контроль оползней;
  • обнаружение активной деятельности вулканов и контроль обстановки в зоне их действия;
  • контроль территорий, находящихся в зонах морских приливов и отливов;
  • контроль территорий, подвергнувшихся землетрясениям;
  • обнаружение песчаных и пылевых бурь, контроль их последствий;
  • контроль опустынивания территорий (интенсивная деградация почв) из-за засоления почв, ветровой и плоскостной эрозии почвенного покрова, изменения климата;
  • контроль интенсивного заболачивания территорий.

Перечисленные задачи решаются с использованием различных видов съемочной аппаратуры, работающей в разных спектральных областях. Некоторые задачи требуют оперативной информации, поступающей регулярно, с периодичностью 1–3 часа, с пространственным разрешением не хуже 1000 м. Другие задачи могут быть менее оперативными, но требующими более высокого пространственного разрешения изображений. Оптимальными условиями для решения поставленных задач были бы высокое пространственное и высокое временное разрешение изображений. Эти условия могут быть реализованы при успешном осуществлении программы наращивания группировки «малых спутников» или воздушным мониторингом при помощи барражирующих пилотируемых или беспилотных летательных аппаратов. Для уточнения информации, полученной с помощью космического мониторинга, используются авиационные средства (самолеты, вертолеты, беспилотные летательные аппараты).

Перечисленные выше задачи, решаемые с помощью космического мониторинга, можно разделить на две группы:

  1. Задачи обнаружения явлений.
  2. Задачи исследования или анализа явлений или их последствий.

К первой группе относятся оперативные задачи. Для оперативных задач используются данные с аппаратуры AVHRR (КА серии NOAA) и MODIS (КА серии TERRA), которые поступают на Землю с периодичностью от 3 до 12 часов.

Ко второй группе относятся все остальные задачи, требующие детального описания и анализа явлений и их последствий , выявления территорий, населенных пунктов и других объектов, попавших в зону чрезвычайной ситуации. Возникающие могут быть мгновенными (в случае паводков) или растянутыми во времени (засуха, изменение ландшафтов, почв). Для решения этих задач требуются соответствующее время наблюдения (сутки, месяц, год, несколько лет) и периоды наблюдений (сутки, декада, месяц, год). По признаку периодичности наблюдения можно подразделить на полуоперативные (засуха, контроль лесов, распределение снежного покрова в горах и на равнинах, контроль ледовой обстановки) и неоперативные (эрозия и деградация почв, смена ландшафтов). Для решения ряда задач (например, обнаружения схода селей) необходима информация с высокой оперативностью и высоким пространственным разрешением, которая пока недоступна для потребителей или отсутствует. В этих случаях можно использовать доступную информацию высокого разрешения, но с потерей оперативности.

В настоящее время для выявления применяется аппаратура, имеющая спектральное разрешение и набор спектральных каналов: 0,58–0,68 мкм, 0,72–1,1 мкм, 3,53–3,93 мкм, 10,3–11,3 мкм. Это обеспечивают 4 канала аппаратуры AVHRR KA NOAA (США), представляющей информацию в открытом доступе. Активная деятельность вулканов обнаруживается с использованием 5-го канала (11,4–12,4 мкм) этой аппаратуры. Для выявления различных признаков, связанных с растительным покровом (состояние лесов и сельскохозяйственных культур, различные их заболевания, гибель, засуха, горимость леса и т.д.) используется следующий набор спектральных диапазонов: 0,6–0,7 мкм, 0,8–0,9 мкм, 1,5–1,7 мкм. Определение параметров водных объектов осуществляется с использованием спектральных диапазонов 0,5–0,6, 0,6–0,7 (для выявления концентраций минеральных взвесей) и 0,8–0,9 мкм. Для выявления паводковой ситуации используются методы активной радиолокации, которые позволяют наблюдать территорию, покрытую в период паводка, как правило, облачностью, что делает ее недоступной для наблюдения в оптическом диапазоне спектра. Задымленность территорий определяют, используя спектральные диапазоны 0,5–0,6 мкм и ближний ИК диапазон. Приземное задымление и загрязнение городов определяется по трем спектральным диапазонам: 0,5–0,6, 0,6–0,7 и 0,8–1,0 мкм. Все задачи, связанные с определением параметров почвенного покрова осуществляются с использованием данных всего оптического диапазона спектра, а также радиолокационных данных.

Ежедневно получаемая космическая информация широко применяется для оперативного мониторинга природных пожаров. При этом используются современные ГИС-технологии, позволяющие объединить разнородную информацию с космическими данными.

Возможности космического мониторинга лесных пожаров определяются оперативностью съёмки, пространственным разрешением и доступностью снимков. В основном для мониторинга пожаров используются метеоспутники TERRA и AQUA с камерой MODIS , которые имеют высокую частоту обзора территории (благодаря широкой полосе захвата 2,5 - 3 тыс. км два метеоспутника обеспечивают 3-4 снимка в сутки на любой регион России) и высокую оперативность передачи информации. Для уточнения информации с метеоспутников, получения итоговых контуров прогоревших территорий, а также регистрации действующих пожаров используются снимки среднего разрешения Landsat и SPOT.

Информация о сканере MODIS представлена на сайтах:

Данные тепловых каналов радиометра обрабатываются по специальному автоматическому алгоритму MOD-14, выявляющему участки поверхности, которые имеют повышенную температуру - так называемые "горячие точки". Разрешение тепловых каналов радиометра - 1 км, однако на практике возможно выявление горения на меньшей площади. Иногда алгоритм может давать "ложные срабатывания", например, от нагретой железной крыши, факела на нефтепромыслах и пр., а небольшие пожары, наоборот, не фиксировать. Для каждой "горячей точки" имеется параметр уверенности ее регистрации - confidence. Тем не менее, данные по "горячим точкам" на данный момент являются доступным, оперативным источником данных о природных пожарах на больших территориях.

В настоящее время в России не существует единого источника информации, в котором можно было бы получить объективную информацию о лесных пожарах. У каждого из существующих источников есть свои достоинства и недостатки, и полную объективную картину ситуации с лесными пожарами можно получить только в одном случае - если пользоваться сразу несколькими независимыми источниками информации.

Источники данных космической съемки

Пожарная информационная система SFMS .

SFMS (ScanEx Fire Monitoring Service) - общедоступная система мониторинга лесных пожаров, основанная на космических снимках Terra, Aqua, LANDSAT 5 и SPOT4/5, разработанная инженерно-технологическим центром "СканЭкс" (Москва).

Система позволяет получить информацию о местоположении крупных и средних лесных пожаров на территории России за предшествующие несколько дней (от 4 до 14) с возможностью разбивки пожаров по датам в формате Google Earth. Во многом аналогична пожарной информационной системе FIRMS, но по умолчанию (для незарегистрированного пользователя) используются более высокие пороги вероятности отнесения "горячей точки" к пожарам, поэтому небольшие/начинающиеся пожары не видны. Содержит несколько дополнительных функций и возможности для пользовательской настройки (в том числе и настройки порога вероятности). Большим преимуществом перед FIRMS является более быстрая выкладка данных по "горячим точкам", а также возможность использования среднедетальных оптических снимков для верификации "горячих точек". Система начала работать в июне 2010 года; к началу пожарного сезона 2011 года планируется доработка сервиса, в том числе с возможностью оперативного перенацеливания камер Spot 4/5.

На основе системы SFMS и FIRMS реализуется проект , в рамках проекта на сайте Прозрачного мира выкладывается ежедневная текстовая сводка о пожарах в Рамсарских угодьях и на ООПТ федерального значения, а на картографическом вебсервисе http://oopt.kosmosnimki.ru/ информация визуализируется . Ресурс содержит границы ценных природных территорий, информацию о возгораниях и на ряд проблемных участков - снимки высокого разрешения. На сайте представлена информация не только по пожарам, но также и по другим угрозам ООПТ.

Летом 2010 года данные о пожарах также выкладывали Яндекс.Карты

Пожарная информационная система FIRMS

FIRMS (Fire Information for Resource Management System) - пожарная информационная система для целей управления природными ресурсами.

Общедоступная система мониторинга лесных пожаров на базе снимков Terra, Aqua разработана группой специалистов Университета штата Мэриленд в сотрудничестве с Национальным агентством США по аэронавтике и исследованию космического пространства (NASA). Система охватывает весь мир и позволяет получать информацию о местоположении крупных и средних лесных пожаров за предшествующие 24 или 48 часов (по выбору пользователя), в формате Google Earth или в окне браузера. Позволяет получать информацию о крупных лесных и средних пожарах.

«Пожарная» часть информационной системы дистанционного мониторинга ИСДМ-Рослесхоз

Система ИСДМ-Рослесхоз в части мониторинга лесных пожаров основывается на космических снимках Terra, Aqua, NOAA и близка к информационным системам FIRMS и SFMS. В отличие от них, она не является в полной мере общедоступной (бесплатный доступ ко всей информации предоставляется только органам управления лесами, а остальные организации могут получить полный доступ на коммерческой основе).

Спутниковые данные о текущей пожарной обстановке на официальном сайте ФГУ «Авиалесоохрана»

Предыдущая версия этой системы (продолжающая работать, но позволяющая получить лишь минимальную информацию о пожарах) по-прежнему размещена на специализированном сервисе сайта ФГУ «Авиалесоохрана»

EOStation-СканЭкс

Частично открытая система, представляет доступ к векторным маскам "горячих точек" в формате.shp и спутниковым снимкам. Общая информация о пожарах с примерным местом возгорания доступна бесплатно, более детальные данные поставляются за плату.

Европейская система мониторинга пожароопасной ситуации в лесах

Англоязычный информационный портал, отражающий текущей уровень опасности лесных пожаров и прогноз на ближайшие пять дней (на основании комплекса метеорологических и иных данных). Прогноз охватывает страны Европейского Союза и прилегающие территории, в том числе самые западные регионы России, на восток примерно до Архангельска. Прогноз обычно достаточно качественный, равно как и анализ текущего уровня пожарной опасности.

Источники исходных данных MODIS

Исходные данные MODIS на весь мир предоставляет NASA.

На сайтах, представленных ниже, есть 3 типа данных о пожарах: оперативные, после каждого пролета спутника, и обобщенные данные за сутки и за 8 дней (выкладываются с задержкой 1-3 недели). Так же можно скачать и сами спутниковые снимки. Предоставляются в растровом формате hdf и требуют довольно сложной обработки и перевода в векторный формат.

Инструкция по использованию поисковой системы WIST на сайте GIS-Lab

Аналитические и новостные сервисы

Раздел «Лесные пожары» Лесного форума Гринпис России

Раздел форума, посвященный проблеме лесных пожаров. Сюда же перемещаются новости, посвященные лесным пожарам.

Карта помощи пострадавшим от лесных пожаров

Сайт принимает сообщения о новых пожарах, о тех, кто нуждается в помощи, и о тех, кто хочет помочь. Кроме того, через "Карту" можно сообщить и получить информацию о проблемах леса и его восстановлении в Вашем регионе, поскольку состояние леса - один из значимых факторов, который может определить масштабы возможных пожаров.

Всемирный центр мониторинга пожаров (GFMC )

Обзоры природных пожаров по странам. Англоязычный информационный портал, представляющий информацию о текущей ситуации с лесными пожарами по основным странам и регионам мира. Данные основываются в основном на спутниковой съемке Terra, Aqua. Основным информационным партнером GFMC в России является Институт леса им. Сукачева (Красноярск). Данные о площади лесных пожаров практически всегда в несколько раз расходятся с "официальными" данными Рослесхоза и МЧС.

Сводка чрезвычайных ситуаций на официальном сайте МЧС

Смотрите в правой части экрана календарь с подзаголовком "Сводка ЧС" - надо выбрать нужную дату.

Данные обновляются ежедневно, в том числе в выходные и праздничные дни. Данные основываются на отчетности органов управления лесами, переработанной неким не вполне понятным образом. Качество данных "официальное". Дополнительную информацию можно получить на сайтах главных управлений МЧС по конкретным субъектам Российской Федерации.

Информационный портал «Лесные пожары»

Информационный портал, содержащий основные новости и обзорно-аналитические материалы, связанные с лесными пожарами в России. Новости и аналитические материалы обновляются регулярно, но оперативная статистическая информация о пожарах отсутствует.

Оперативная информация о лесных пожарах Федерального агентства лесного хозяйства

Данные обновляются ежедневно (в пожароопасный период), кроме выходных и праздничных дней. Приводится сравнение с аналогичными показателями прошлого года. Данные основываются на официальной отраслевой отчетности и не отражают пожары в тех лесах, которые официально (по новому лесному законодательству) лесами не считаются - например, в лесах и лесополосах на землях сельскохозяйственного назначения. Качество данных вполне "официальное", т.е. примерно "как у новостей в телевизоре".

Пожары могут принести колоссальный ущерб природе и, чтобы избежать его последствий, производят мониторинг лесных пожаров. Способы различные: есть проверенные временем визуальные осмотры, также практикуют наблюдение с помощью спутников и современной техники. Эффективно использовать системы мониторинга лесных пожаров в комплексе. В Российской Федерации действуют профильные службы и учреждения для сбора, анализа и структурирования данных.

Визуальный осмотр

В некоторых лесах можно встретить специальные вышки. Эти строения выступают в роли наблюдательных пунктов. Их строительством обычно занимаются лесные хозяйства. Вышки оборудуют средствами связи, на наблюдательном пункте есть азимутальный круг. Он нужен для определения направления пожара.

Лес делят на территории по радиусу обзора с такой башни – 5-7 км. Вышки строят из дерева, но в последнее время многие элементы их конструкции меняют на металлические. Срок жизни строений с наблюдательными пунктами из дерева менее 10 лет.

Осмотр лесных территорий осуществляет специальный человек. При обнаружении пожара он определяет его направление, возможную опасность и передает информацию на диспетчерский пункт через радио или телефонную связь.

Проблема этого способа мониторинга в малочисленности наблюдательных вышек и работников. Раньше лесничих было на порядок больше, сейчас их количество сократилось в несколько раз.

На части наблюдательных вышек устанавливают видеокамеры. Это не решает основной проблемы, потому что за съемкой должен наблюдать человек в оборудованном пункте. Если система видеонаблюдения автоматизирована, то задача упрощается, но в большинстве камеры требует ручного управления.

Помимо этого, съемка ведется в одном направлении, поэтому необходимо установить несколько камер. Вышки сотовой связи тоже используют для мониторинга. На них устанавливают тепловизоры и видеокамеры.

Исследования с помощью спутников

Один из самых недорогих способов – это спутниковый мониторинг. Спутники с помощью сканеров делают снимки в инфракрасном спектре. Это позволяет узнать разницу температур и определить, где идут лесные пожары.

Данные и снимки обрабатываются на космическом аппарате, где исправляют искажения, делают привязку к географическим точкам. Последний этап обработки, который включает цифровой анализ, визуальное дешифрирование и интерпретацию снимков, производят в автоматическом или интерактивном режиме.

Информацию о лесных пожарах можно увидеть на специальных сайтах, например . Созданы федеральные системы мониторинга лесных пожаров. Они составляют общую картину, используя данные визуального осмотра, спутниковых снимков и других методов мониторинга.

Этот дистанционный метод входит в список функций экологического мониторинга. С помощью спутников также получают метеорологические характеристики, данные о техногенной обстановке, разливе рек, динамике снежных покровов, тепловых выбросах. Каждой области применения соответствует определенный канал, его обозначают цветом.

Карта пожаров в России доступна всем заинтересованным пользователям.

Информация обновляется в среднем 4 раза в день. Это усложняет идентификацию возгораний и снижает оперативность помощи пожарной охраны. Периодичность обновления зависит от времени пролета спутников по орбите. Основные данные предоставляет серия американских спутников NOAA.

Работают и частные спутники, их снимки отличаются точностью и детальностью, но стоят дороже общедоступных. Поэтому наряду с космоснимками используют данные визуального осмотра. На карте пожаров указывают точки пожаров и возможные причины их возникновения. Существует индийская система спутникового мониторинга.

На точность космоснимков влияют многие факторы. Например, повышенная облачность мешает как обнаружению лесных пожаров, так и определению их размера. Очаги возгораний на картах могут не совпадать с реальными, но их примерные координаты очерчены границами.

То есть на карте показана область, где есть очаг. Несколько пожаров на карте обычно объединяют в единый кластер. В этом случае точность также не достоверная. По этим данным определяют площадь пожара и скорость его распространения в лесах. Есть возможность получать оповещения о выявлении лесных пожаров, если оформить подписку на соответствующем сервисе.

Альтернативные методы

В качестве вспомогательных методов мониторинга лесных пожаров называют также осмотр территорий с воздуха. Наблюдение осуществляют с вертолетов, самолетов. В последние годы применение в этом направлении нашли беспилотные летательные аппараты, которые делают видеозаписи.

Стоимость всех перечисленных способов высокая. Из-за этого невозможно организовать непрерывный мониторинг в лесной зоне. Однако при возможности и достаточном финансировании летательные аппараты позволяют получать точную информацию в режиме реального времени. Кроме того, авиация способна тушить пожары при их обнаружении.

В России для тушения и мониторинга лесных пожаров с помощью вертолетов и пожарных самолетов создано федеральное учреждение «Авиалесоохрана». В состав экипажа воздушного судна входит летчик, парашютист-пожарный и десантник-пожарный, которые прошли специальную подготовку.

Статистика

Помимо наполнения интерактивной карты лесных пожаров, ведется их статистика. Она имеет не только информационный характер. На основе полученных данных анализируют причины возгораний, скорость их распространения.

Это необходимо для , составления прогнозов, организации эффективного тушения. По пожарной опасности определяют экономический ущерб. Статистические данные и картографирование позволяют отличать пожары от техногенных источников тепла, которыми могут быть производственные объекты.

Первые записи о лесных пожарах в летописях датированы 1724 годом. Уже тогда были призывы сохранить угодья от огня. Во времена царской России данные уже упорядочивали. Сегодня информация о лесных пожарах сводится в таблицы. Статистику ведут ведомства и службы.

По данным Росстата последние массовые пожары были зафиксированы в летний период 2010 года. Однако их количество не рекордное, экологический и экономический ущерб был причинен вследствие больших территорий, охваченных огнем, и задымлением.

В 2010 году в общей сложности произошло более 39000 лесных пожаров. Тогда сгорело на корню около 150000000 м 3 лесов. Аналогичные масштабы лесных пожаров наблюдали в 1998 году. По количеству пожаров лидирует 2002 год – 434000 возгораний, но последствия не столь плачевны.

ГЕОИНФОРМА ТИКА

Development of information control

Stanislava Igorevna Vasyutinskaya, Cand. Econ. Sciences, Assoc. the Department of Economics and entrepreneurship, Moscow State University of Geodesy and Cartography

The article analyzes the development of information control. Article shows the difference between information control and information management. This article describes an information approach to information control. Article shows cyclical informational control. Article argues that the cyclical control is his property is required. Article shows the versatility of information control. The article reveals the content of the information control tasks

Keywords. : control, information, information control, information models, information technology management

ГЕОИНФОРМАЦИОННЫЙ МОНИТОРИНГ ПОЖАРОВ

Александр Анатольевич Лобанов, канд. техн. наук, доц.,

E-mail: [email protected],

Московский государственный технический университет радиотехники, электроники и автоматики, https://www .mirea.ru

Статья описывает методы геоинформационного мониторинга. Геоинформационный мониторинг применяют для наблюдения и тушения лесных пожаров. Статья описывает космический мониторинг. Космический мониторинг является составной частью геоинформационного мониторинга. Статья описывает специализированную информационную систему мониторинга. Статья показывает особенности моделирования при проведении мониторинга. Комплексный мониторинг является основой мониторинга лестных пожаров.

Ключевые слова: космические исследования, мониторинг, космический мониторинг, геоинформационный мониторинг, пожары.

Введение

Г еоинформационные технологии (ГИТ) - это многофункциональные информационные технологии, предназначенные для сбора, обработки, моделирования и анализа

пространственных данных, их отображения и применения при подготовке и принятии решений . Основное назначение ГИС заключается в формировании знаний о Земле, отдельных территориях, местности, а также своевременном доведении необходимых и достаточных пространственных данных до пользователей с целью достижения наибольшей эффективности их работы . Геоинформационные технологии (ГИТ) - это информационные технологии обработки пространственно организованной информации. Основной особенностью ГИТ, определяющей ее преимущества в сравнении с другими ИТ, является применение геоданных , дающих интегрированную информацию о земной поверхности. При этом геоданные должны обеспечивать: точную привязку, систематизацию, отбор и интеграцию всей поступающей и хранимой информации (единое адресное пространство); наглядность информации для принятия решений; динамическое моделирование процессов и явлений; оперативный анализ пространственных ситуации. В широком смысле ГИТ - это аналитические средства для работы с разнообразной информацией. Развитием геоинформационных технологий являются технологии

ГЕОИНФОРМА ТИКА

геоинформационного мониторинга, использующие интеграционный аспект геоданных и интеграционный аспект ГИТ. Интеграционный аспект ГИТ обеспечивает интеграцию с ними космических технологий. Хотя по охвату космические технологии шире , но по методам они являются специализированными. Это обуславливает интеграцию космических технологий в ГИТ именно по методам обработки. В общем можно говорить о пространственном мониторинге , который решает широкий спектр задач исследования земной поверхности.

Лесные и степные пожары. Лесные пожары причиняют большой ущерб . С ростом населения они становятся все более опасным явлением, а борьба с ними становится государственной проблемой не только в России, но и в других государствах. Не эффективные меры, по тушению огня, способствуют распространению пожаров на огромной площади и делают их чрезвычайно опасными для жизни человека.

По официальным данным Федерального агентства лесного хозяйства на территории России ежегодно возникает от 10 до 40 тыс. природных пожаров, которые охватывают площади от 0,5 до 2,5 млн га . Причём эта официальная статистика не относится к охраняемым территориям. С учётом этого, общая площадь, пройдённая огнем, для всей Российской Федерации по оценкам ведущих учёных в этой области (академик А.С. Исаев, член-корреспондент РАН Г.Н. Коровин) составляет от 2 до 6,0 млн га ежегодно . Статистические данные о природных пожарах предоставляет также МЧС России. Данные МЧС и лесного ведомства существенно отличаются. Например, по данным Росле-схоза в 2009 г. общая площадь, пройдённая огнём, составила 2,4 млн га при количестве лесных пожаров 22,54 тыс. В то время как по официальным данным МЧС России в 2009 г. площадь, пройдённая огнем, составила 1,14 млн га (т. е. более чем в 2 раза меньше, чем по данным Рослесхоза), при числе очагов пожаров 21,9 тыс. .

Оперативное обнаружение и мониторинг очагов пожаров на территории обширных и труднодоступных лесных массивов России - актуальная задача. Традиционное использование авиации для патрулирования пожароопасных районов требует значительных финансовых средств, что объясняет возрастающую роль спутниковых систем дистанционного зондирования земной поверхности. Использование искусственных спутников земли является оптимальным для решения данной проблемы . Сегодня технологии космического наблюдения и созданные на их основе технологии космического мониторинга широко применяют в мире.

Степные пожары также представляют большую опасность. Ежегодно степные пожары охватывают значительные территории Республики Казахстан . В последние годы пожары начинаются уже в апреле, а заканчиваются в середине октября. Большое значение для уменьшения экономического ущерба имеет своевременное обнаружение очагов пожаров. В современных условиях наиболее эффективное и оперативное решение этой проблемы достигается при использовании систем космического мониторинга пожаров.

В Российской Федерации космическая съёмка заняла лидирующее место в системе средств, применяемых при проведении мониторинга окружающей среды . Перечень тематических задач, решаемых по данным дистанционного зондирования Земли велик и фиксирование природных пожаров, в частности степных одна из важнейших.

Математические методы, применяемые при мониторинге пожаров. Широкое распространение снимков из космоса часто создаёт обманчивое представление о легкости получения надежной информации при их использовании. Вся визуальная информация должна подвергаться анализу и обработке. Для этого необходимо применение разнообразных математических моделей.

Для простейших математических моделей, работающих по пороговым алгоритмам , большое значение имеет многоканальная съемка в тепловых диапазонах. Один из результатов - создание многоступенчатого алгоритма обнаружения очагов

Образовательные ресурсы и технологии^2015’2(10)

ГЕОИНФОРМА ТИКА

возгораний, позволяющего надёжно регистрировать пожары на площади 0,2-0,3 га, т. е. в начальной стадии развития. Была доказана возможность определения площадей, выгоревших во время действия крупных лесных пожаров, что позволило проводить инвентаризацию послепожарного состояния лесов. Эти методики, разработанные впервые в России, использованы для решения практических задач.

Спутниковые данные многоканальных радиометров используют пороговые алгоритмы обнаружения очагов пожаров. Информативными признаками при таком подходе являются радиационная температура в третьем канале и разность температур третьего и четвёртого каналов.

Другие комбинации измеряемых характеристик обычно используются для контроля облачности и простейшего учёта вариаций искажающего влияния атмосферы. Очевидно, что точность работы таких пороговых алгоритмов зависит от вариаций оптико-геометрических условий наблюдений.

При проведении сложного анализа используют более сложные математические модели . В рамках такой модели можно определить поля плотности излучения над очагом лесного пожара в различные моменты времени, что в принципе позволяет создать новую методику обнаружения и диагностики лесных пожаров по данным аэрокосмического мониторинга. Эти модели должны создавать возможные сценарии возникновения и развития экстремальной обстановки и обосновать наиболее эффективные способы и меры борьбы со степными пожарами, что приведёт к снижению масштабов их последствий. Особенность применения таких моделей связана с информационным и пространственным моделированием.

Главным результатом математического моделирования лесных пожаров является определение предельных условий распространения лесных пожаров, при которых процесс горения прекращается. Разработанные к настоящему времени математические модели лесных пожаров позволяют правильно описывать механизмы их распространения и классифицировать основные режимы зажигания, моделировать развитие пожаров в зависимости от настоящей ситуации лесного фонда и видов действующих пожаров, с целью координации работы лесопожарных служб и назначения оптимального перечня мероприятий по тушению и устранению последствий пожаров.

В связи с взаимодействием многих факторов в последние десятилетия рядом авторов выдвинуты концепции глобального описания окружающей среды и созданы модели различной сложности для параметризации динамики характеристик биосферы и окружающей среды . Использование большой информационной базы об этих характеристиках позволяет рассматривать и оценивать последствия возможной реализации различных сценариев развития ситуаций. Подходы к синтезу глобальных моделей приводят к необходимости применения глобального мониторинга . Глобальный мониторинг основан на интеграции космического и геоинформационного мониторинга.

Решение этих вопросов позволяет в первом приближении говорить о математической теории лесных пожаров и использовать ее для создания как способов и средств для борьбы с лесными пожарами, так и прогнозов экологических последствий лесных пожаров. Однако эта теория требует дальнейшего развития и углубления.

Специализированная информационная система мониторинга пожаров. Специализированная информационная система мониторинга пожаров (СИСМП) обеспечивает сбор, хранение, обработку и распространение геоданных о горимости лесов, условиях возникновения и развития лесных пожаров, уровне их воздействия на окружающую среду, получаемых на основе наземных, воздушных и космических средств и методов наблюдения за лесными пожарами и погодными условиями.

Масштаб технической реализации этой системы может быть от отдельной ГИС до ситуационной комнаты. Информационная поддержка системы осуществляется на портале. Информация, представленная в виде совокупности таблиц, электронных тематических карт и результатов обработки спутниковых изображений, оперативно обновля-

Образовательные ресурсы и технологии^2015’2(10)

ГЕОИНФОРМА ТИКА

ется на WWW-сервере и доступна пользователям по сети Internet в реальном времени.

Задачи СИСМП включают следующий перечень: сбор оперативной информации; оценка и прогноз пожарной опасности в лесах; мониторинг процесса возникновения и развития лесных пожаров; мониторинг процесса обнаружения и тушения лесных пожаров.

Основным содержанием специализированной информационной системы мониторинга пожаров (СИСМП) является оперативная космическая информация о зарегистрированных очагах пожаров. Наряду со стандартными слоями, представляющими элементы топографической основы, в данной системе содержатся специализированные файлы информации служб по охране леса. Система спутникового мониторинга лесных пожаров работает в автоматическом режиме, что позволяет круглосуточно, в течение пожароопасного периода, вести прием и обработку информации с целью обнаружения лесных пожаров на территории.

На основе СИСМП - технологических систем возможен прогноз поведения пожаров и их последствий, что в свою очередь позволяет осуществить планирование мероприятий в рамках определённых территорий и периода пожарного сезона по предупреждению возгорания лесных участков и устранение последствий пожаров. Существует ряд важных проблем, решить которые можно только при наличии спутниковых данных высокого пространственного разрешения. Комплекс принимает информацию с американской спутниковой системы. Основные проблемы применения данной системы является: повышение точности обнаружения очага пожара; сокращение ложных оповещений; обнаружение различных типов возгорании, а также разработка общей математической модели лесных пожаров, которая позволит усовершенствовать методику прогноза лесной пожарной опасности.

Основные ограничения на повышение разрешения изображений накладывает бортовая аппаратура регистрации изображений . Сюда включается, прежде всего, оптическая разрешающая способность, определяемая отношение рабочей длины волны к размеру регистрирующей апертуры объектива, а также степень усреднения изображений и шаг дискредитации перед их передачей на Землю ИСЗ. Повышение разрешения включает две взаимосвязанные задачи: улучшение визуального качества и математическое повышение качества изображений. Решению первой задачи служит метод фрагментации и зонирования изображений. Решению второй - метод деконволюции с регуляризацией.

Опыт применения системы FIRMS. В мире существуют системы дистанционного мониторинга пожаров, использующиеся в узких кругах организаций. В последние годы появились проекты, предоставляющие ежедневные сведения о них для всех желающих - общедоступно и бесплатно. Наиболее известная на сегодняшний день система - The Fire Information for Resource Management System (FIRMS) , разработанная в агентсве по аэронавтике и исследованию космического пространства (NASA). В августе 2010 года на её основе продовольственная и сельскохозяйственная организация ООН (FAO) запустила собственный ресурс, Global Fire Information Management System (GFIMS), признав FIRMS своим базовым инструментом в мониторинге пожаров. Потребность в широком использовании таких проектов растёт, в особенности в условиях недостаточно отлаженной работы по мониторингу пожаров работников служб, отвечающих за их обнаружение и тушение, в том числе и в России.

Система позволяет получать оперативную информацию о местоположении пожаров (hotspots), как центров пикселей 1x1 км на основе автоматического регистрирования высокого отражения в тепловых каналах спектра солнечного излучения снимков с камеры MODIS (Moderate Resolution Imaging Spectroradiometer), установленной на спутниках Terra и Aqua. Для мониторинга используется стандартный продукт MODIS Land MOD14/MYD14 (Fire and Thermal Anomalies).

Оперативные данные представлены в веб-интерфейсе (Web Fire Mapper). Доступны для скачивания в различных форматах (Active Fire Data), могут быть высланы по

Образовательные ресурсы и технологии^2015’2(10)

ГЕОИНФОРМА ТИКА

электронной почте (E-mail Alerts). Система предоставляет доступ к исходным склейкам снимков (MODIS Subsetsl программы MODIS Rapid Response System, где выложен архив в удобном для просмотра синтезе каналов. Недавно появилась возможность получения информации о ежемесячной оценке выгоревших площадей (Burned Area).

К преимуществам использования информационной системы FIRM можно отнести обзорность (данные предоставляются на весь мир, по России скачиваются одним файлом), регулярность получения данных (несколько раз в день), точность привязки на местности, независимость предоставляемой информации, легкость использования пользователей сети Интернет, доступ к склейкам исходных снимков на многие территории в удобном синтезе каналов. Ограничения связаны с низким разрешением исходных снимков, автоматическими алгоритмами обработки и задержкой предоставления получаемой информации, не позволяющей отслеживать пожары в режиме реального времени. Система не позволяет отличить пожар от любых других источников теплового излучения (на предприятиях, территориях нефтедобычи и т. д.).

Оперативные снимки MODIS, использующиеся для мониторинга, не позволяют детектировать слабые, низкотемпературные, кратковременные, небольшие по площади пожары. Результаты мониторинга зависят от погодных условий (облачности, дождя). Нет данных «на сейчас» - данные выкладываются с задержкой в 5-10-18 часов, при этом в одном слое отображаются данные на разное время в течение последних суток. Скачать можно только относительно свежие пожары - доступ к архивам не реализован. Векторный слой пожаров не отражает реальные контуры сгоревших территорий, а лишь показывает центры квадратов со стороной 1 км. При этом пожар может занимать не всю площадь пикселя (быть менее 1 км2). Таким образом, система дает вполне качественную информацию о верховых и сильных низовых пожарах. Однако для мониторинга некоторых торфяных и травяных пожаров она не всегда удобна.

Наиболее быстро отследить пожары можно на он-лайн карте (вкладка Web Mapping Services Web Fire Mapper). На ней точками отображаются пожары (fires) за последние 24, 48, 72 часа, 7 дней или произвольно с камер Terra и Aqua при выборе в качестве источника данных Modis Rapid Response. Подложкой (background images) может служить карта рельефа/рек или склейка безоблачных снимков MODIS с пространственным разрешением 500 м (в 1 пикселе умещается территория 500x500 м) за 2004 год. Дополнительно можно показать границы страны, населенные пункты и особо охраняемые природные территории (вкладка layers).

К слабым сторонам веб-версии можно отнести невозможность скачивания данных, неудобство навигации, медленную отрисовку, отсутствие масштабной линейки и снимков высокого разрешения в подложке. Летом 2010 года на Web Fire Mapper появилась функция визуализации ежемесячных масок сгоревших территорий с апреля 2000 года.

Оперативное выявление пожаров в масштабах страны. Удобно выявлять местоположения пожаров, используя специализированные системы и базы данных программы, а также геосерверы (GoogleEarth). В этом случае на компьютере должно быть установлено приложение Google Планета Земля. В главном меню FIRMS находим вкладку Active Fire Data и выбираем удобный формат данных, н-р shp или kml. Данные доступны для скачивания в первом случае за последние 7 дней, 48 и 24 часа, во втором - только за последние 48 и 24 часа. Если требуются данные за более ранний период (за последние 2 месяца) - их можно скачать в виде текстового файла с ftp сервера, отправив анкету в группу по разработке. Обновление на сайте происходит 3-4 раза в сутки. Данные о пожарах разбиты по регионам. Для России выбираем Russia and Asia - либо на карте, либо в таблице ниже. Слой содержит информацию о камере, координатах, дате и времени регистрации, пороге уверенности детектирования (%).

При визуализации местоположения пожаров в Google Earth можно настроить внешний вид значков. Для этого правой кнопкой мыши щелкаем на названии слоя (Russia and Asia 24h MODIS Hotspots), внизу во всплывающем меню находим «Свойства»,

Образовательные ресурсы и технологии^2015’2(10)

ГЕОИНФОРМА ТИКА

щелкаем на значке пожара справа от названия и выбираем нужный, выставляем размер. Там же при желании можно поменять имя слоя.

Оценка пройденной пожарами территории. Новая функция системы FIRMS -карта сгоревших территорий (на основе продукта MODIS - MCD45A1). Она представляет собой ежемесячное грид-покрытие. Все пиксели (сгоревшие территории) покрашены в соответствии с легендой в зависимости от времени пожара (шкала с днями месяца). Перейти на нее можно с отдельной вкладки меню Burned Area или прямо на онлайн карте. В первом случае есть возможность прочитать о методике, открыть данные на он-лайн карте и загрузить данные.

Доступ к снимкам MODIS. Система FIRMS позволяет пользователю без сложностей, связанных с предварительной обработкой снимков, изучить снимки - первоисточники данных о пожарах с сайта MODIS Rapid Response System. Для этого необходимо перейти в пункт меню Modis Subsets. На карте выбираем необходимый «квадрат». К сожалению не вся Россия попадает в отобранные для проекта территории (естественно, снимки MODIS существуют, но для работы с ними требуется предварительная обработка).

Мониторинг пожаров. Согласно рекомендациям FАО мониторинг пожаров и оценка последствий играют важную роль. Мониторинг не является одной технологией, а включает совокупность разных мониторингов. Мониторинг воздействия пожаров и результатов пожаротушения необходим для оптимального решения между прекращением пожара и защитой природного ресурса. Оценка окупаемости затрат на пожаротушение является необходимой при оценке эффективности различных типов пожаротушения.

Мониторинг программы профилактики предотвращения пожаров помогает сократить частоту возникновения пожаров определённого типа и затраты на тушение пожаров. При комплексном мониторинге должен выполняться комплексный план мониторинга и оценки всех аспектов программы управления пожарами.

При мониторинге последствий пожаров должны храниться и анализироваться отчёты о результатах анализа причин несчастных случаев и анализ извлечённых уроков, а также проведение контроля её реализации. Информацию и данные, получаемые из программы мониторинга профилактики пожаров, необходимо использовать для повышения эффективности мониторинга.

Следует осуществлять программу мониторинга экологических последствий пожаров и использования методов пожаротушения. Эта программа должна включать сотрудничество с университетами, научными организациями и местными общинами. Наиболее отработанной и широко применяемой в мире является технология космического обнаружения и мониторинга природных пожаров. Для круглосуточного обзора всей поверхности Земли используются данные метеоспутников NOAA (разрешение 1 км), геостационарных метеоспутников и данные радиометров MODIS американских спутников TERRA, AQUA (разрешение 0,25-1 км), распространяемые бесплатно.

В США и Европе создана система космического мониторинга благодаря использованию многочисленной космической группировки спутников (геостационарные метеоспутники, NOAA, TRMM, AQUA, TERRA, DMSP) и совершенных алгоритмов. Обработанные изображения территории Земли с выделенными очагами пожаров находятся в свободном доступе на ряде интернет-ресурсов.

В подсистеме управления осуществляется официальный, регистрируемый прием от внешних источников необходимой для работы системы мониторинга информации (блок приёма информации), а также удовлетворяются запросы потребителей информации (блок выдачи информации). Внешними источниками информации выступают территориальные центры (подразделения) мониторинга, лабораторного контроля и прогнозирования чрезвычайных ситуаций субъектов Российской Федерации; единые дежурно-диспетчерские службы МЧС России; подразделения, занимающиеся сбором

Образовательные ресурсы и технологии^2015’2(10)

ГЕОИНФОРМА ТИКА

данных о факторах пожарной и экологической опасности.

Заключение. В настоящее время, несмотря на большой объем работ, в России нет единой глобальной базы данных, связанной с влиянием и ущербами от пожаров, подобно создаваемой национальной инфраструктуре пространственных данных. В степных сельскохозяйственных районах до недавнего времени вообще не фиксировались сельхозпалы и иные возгорания растительности, если не было угрозы населённым пунктам и техническим объектам. В отдельных муниципальных районах на местном уровне ведётся отчётность по проведению сельхозпалов, однако, как показывают проверки, отчётность существенно искажается, многие проведённые палы не фиксируются. Сочетание зональной обработки изображений и их реконструкции позволит подойти к решению задач прогноза развития пожаров и выбора методов подавления. Очевидно, что при этом целесообразно использовать современные геоинформационные технологии и оболочки документирования результатов мониторинга лесных пожаров и принятия своевременных решений по борьбе с лесными пожарами.

В систему мониторинга пожарной безопасности целесообразно включать систему экологической безопасности . В систему мониторинга состояния пожарной и экологической безопасности целесообразно включить подсистемы: управления, обработки и хранения информации; анализа и оценки информации; прогнозирования. Предлагаемая система мониторинга обеспечивает решение всех указанных выше задач. Рассмотрим эти подсистемы подробнее. Система только наблюдений из космоса за пожарами не обеспечивает решение задачи, стоящие перед системой мониторинга. Необходимо создание глобальной системы мониторинга и прогнозирования возникновения пожаров с использование наземных данных и геоинформационных технологий и методов.

Литература

1. Цветков В.Я. Применение геоинформационных технологий для поддержки принятия решений // Известия высших учебных заведений. Геодезия и аэрофотосъемка. 2001. № 4. С. 128-138.

2. МиловановаМ.С. Особенности геоинформационного мониторинга арктических территорий // Известия высших учебных заведений. Геодезия и Аэрофотосъемка. 2012. № 5. С. 60-69.

3. Савиных В.П., Цветков В.Я. Геоданные как системный информационный ресурс // Вестник Российской Академии Наук. 2014. Т. 84. № 9. С. 826-829. DOI: 10.7868/ S0869587314090278.

4. Бондур В.Г., Кондратьев К.Я., Крапивин В.Ф., Савиных В.П. Проблемы мониторинга и предсказания природных катастроф // Исследования Земли из космоса. 2005. № 1. С. 3-14.

5. Лобанов А.А. Пространственный мониторинг // Славянский форум. 2015. № 1(7). С. 128-136.

6. Бондур В.Г. Космический мониторинг природных пожаров // Вестник Российского фонда фундаментальных исследований. 2011. № 2-3. С. 78-94.

7. Бондур В.Г. Космический мониторинг природных пожаров в России в условиях аномальной жары 2010 г. // Исследование Земли из космоса. 2011. № 3. С. 3-13.

8. Нежевенко Е.С., Козик В.И., Феоктистов А.С. Прогнозирование развития лесных пожаров на основе аэрокосмического мониторинга // Образовательные ресурсы и технологии. 2014. № 1. С. 377-384.

9. Бондур В.Г. Актуальность и необходимость космического мониторинга природных пожаров в России // Вестник Отделения наук о Земле РАН. 2010. Т. 2. № NZ11001.

10. Архипкин О.П., Спивак Л.Ф., Сагатдинова Г.Н. Пятилетний опыт оперативного космического мониторинга пожаров в Казахстане // Современные проблемы дистанционного зондирования Земли из космоса. 2007. Т. 1. № 4. С. 103-110.

11. ГОСТ Р.22.1.09-99 Мониторинг и прогнозирование лесных пожаров // Общие требования. 1999.

12. Бондур В.Г. Аэрокосмические методы и технологии мониторинга нефтегазоносных территорий и объектов нефтегазового комплекса // Исследование Земли из космоса. 2010. № 6. С. 3-17.

13. Аникина Г.А., Поляков М.Г., Романов Л.Н., Цветков В.Я. О выделении контура изображения с помощью линейных обучаемых моделей // Известия АН СССР. Техническая кибер-

Образовательные ресурсы и технологии^2015’2(10)

ГЕОИНФОРМА ТИКА

нетика. 1980. № 6. С. 36-43.

14. Бондур В.Г., Журбас В.М., Гребенюк Ю.В. Математическое моделирование турбулентных струй глубинных стоков в прибрежные акватории // Океанология. 2006. Т. 46. № 6. С. 805-820.

15. Лобанов А.А., Цветков В.Я. Пространственное моделирование // Славянский форум. 2015. № 1(7). С. 137-142.

16. Цветков В.Я. Информационное моделирование. М.: Московский государственный технический университет радиотехники, электроники и автоматики (МГТУ МИРЭА), 2015. 60 с.

17. Tsvetkov V.Ya. Spatial Information Models // European Researcher. 2013. Vol. (60). № 101. Р.2386-2392.

18. Заварзин Г.А. Антипод ноосферы // Вестник РАН. 2003. Т. 73. № 7. С. 627-636.

19. Гвинн М.Д., Селла Ф., Валлен К.К. Глобальная система мониторинга окружающей среды: принципы и прогресс // Комплексный глобальный мониторинг загрязнения окружающей природной среды. Труды Международного симпозиума. Л., 1980.

20. Tsvetkov V.Ya. Global Monitoring // European Researcher. 2012. Vol. (33). № 11-1. Р. 1843-1851.

21. Бондур В.Г., Килер Р.Н., Старченков С.А., Рыбакова Н.И. Мониторинг загрязнений прибрежных акваторий океана с использованием многоспектральных спутниковых изображений высокого пространственного разрешения // Исследование Земли из космоса. 2006. № 6. С. 42-49.

22. Davies D. K. et al. Fire information for resource management system: archiving and distributing MODIS active fire data // Geoscience and Remote Sensing, IEEE Transactions on. 2009. Т. 47. № 1. С. 72-79.

23. Соловьев В.С., Козлов В.И., Муллаяров В.А. Дистанционный мониторинг лесных пожаров и гроз в Якутии. Якутск: Изд-во ЯНЦ СО РАН, 2009. 108 с.

Geoinformation monitoring fires

Alexandr AnatoTevich Lobanov, Ph.D., Associate Professor, Moscow State Technical University of Radio Engineering, Electronics and Automation MIREA

This article describes methods of geoinformation monitoring. Geoinformation monitoring is used for monitoring and suppression of forest fires. This article describes the space monitoring. Space monitoring is an integral part of geoinformation monitoring. This article describes a specialized information system monitoring. Article shows the details of modeling for monitoring. Integrated monitoring is the basis for monitoring flattering fires.

Keywords: space research, monitoring, satellite monitoring, geoinformation monitoring, fires

УДК 004.8+528.06

ДОБЫЧА ДАННЫХ И ГЕОДАННЫХ

Владимир Михайлович Маркелов, соискатель,

E-mail: [email protected],

Московский государственный университет геодезии и картографии,

http://www.miigaik.ru

Статья описывает новую интеллектуальную технологию - интеллектуальный анализ геоданных. Технология является развитием известной технологии Data Mining. Описана эволюция понятия геоданных. Статья показывает различие между технологиями Data Mining и GeoData Mining. Статья раскрывает понятия геоинформационное знание, пространственное знание и геознание. Статья описывает проблемы интеллектуализации анализа геоданных.

Ключевые слова: науки о Земле, геоинформатика, интеллектуальные технологии, гео-

Образовательные ресурсы и технологии^2015’2(10)




Top