Мир прекрасен. Что такое спин элементарных частиц

1/2, для фотона 1, для p - и К-мезонов 0.

Спином наз. также собств. момент кол-ва движения , мол. системы; в этом случае спин системы определяется как векторная сумма спинов отдельных частиц: S s = S. Так, спин ядра равен целому или полуцелому числу (обозначается обычно I) в зависимости от того, включает ли ядро четное или нечетное число и . Напр., для 1 Н I = 1/2, для 10 В I = 3, для 11 В I = 3/2, для 17 О I = 5/2, для 16 О I = 0. Для Не в основном состоя нии полный электронный спин S = 0, в первом S = 1. В совр. теоретич. физике, гл. обр. в теории , спином часто называют полный момент кол-ва движения частицы, равный сумме орбитального и собств. моментов.

Концепция спина введена в 1925 Дж. Уленбеком и С. Гаудсмитом, к-рые для интерпретации эксперим. данных о расщеплении пучка в магн. поле предположили, что можно рассматривать Как вращающийся вокруг своей оси волчок с проекцией на направление поля, равной В том же году В. Паули ввел понятие спина в математич. аппарат нерелятивистской и сформулировал принцип запрета, утверждающий, что две тождеств. частицы с полуцелым спином не могут одновременно находиться в системе в одном и том же (см. ). Согласно подходу В. Паули, существуют s 2 и s z , к-рые обладают собств. значениями ђ 2 s(s + 1) и ђs z соотв. и действуют нат. наз. спиновые части волновой ф-ции a и b (спин-функции) так же, как орбитального момента кол-ва движения I 2 и I z действуют на пространств. часть волновой ф-ции Y (r), где r-радиус-вектор частицы. s 2 и s z подчиняются тем же правилам коммутации, что и I 2 и I z .

Спиновый . В Брейта-Паули Н ВР входят два члена, линейно зависящие от компонент векторного потенциала А, определяющего внеш. магн. поле:


Для однородного поля А = 1/2 В x r , знак x означает векторное произведение, и


Где -магнетон . Векторная величина наз. магн. моментом частицы с зарядом е и массой т (в данном случае-электрона), векторная же величина получила назв. спинового магн. момента. Отношение коэффициентов перед s и l наз. g-фактор ом частицы. Для 1 Н (спин I = 1/2) g-фактор равен 5,5854, для ядра 13 С с тем же спином I = 1/2 g-фактор равен 1,4042; возможны и отрицат. g-факторы, напр.: для ядра 29 Si g-фактор равен - 1,1094 (спин равен 1/2). Экспериментально определяемая величина g-фактора составляет 2,002319.

Как для одного , так и для системы или др. частиц спином S ориентируется относительно направления однородного поля. Проекция спина S z на направление поля принимает 2S + 1 значение: - S, - S + 1, ... , S. Число разл. проекций спина наз. системы со спином S.

Магн. поле, действующее на или ядро в , м.б. не только внешним, оно может создаваться и др. либо возникать при вращении системы заряженных частиц как целого. Так, взаимод. магн. поля, создаваемого i, с ядром v приводит к появлению в гамильтониане члена вида:

где n v - единичный в направлении радиуса-вектора ядра R v , Z v и М v -заряд и масса ядра. Члены вида I v ·I i отвечают , члены вида I v ·s i - . Для атомных и мол. систем наряду с указанными возникают и члены, пропорциональные (s i ·s j), (I v ·I m ) и т.п. Эти члены обусловливают расщепление вырожденных энергетич. уровней, а также приводят к разл. сдвигам уровней, что определяет тонкую структуру и сверхтонкую структуру (см. , ).

Экспериментальные проявления спина. Наличие отличного от нуля спина электронной подсистемы приводит к тому, что у в однородном магн. поле наблюдается расщеп-ление уровней энергии, причем на величину этого расщепления влияет хим. (см. ). Наличие ненулевых спинов также приводит к расщеплению уровней, причем это расщепление зависит от экранирования внеш. поля ближайшим к данному ядру окружением (см. ). Спин-орбитальное взаимод. приводит к сильным расщеплениям уровней электронных состояний, достигающим величин порядка неск. десятых эВ и даже неск. единиц эВ. Особенно сильно оно проявляется у тяжелых элементов, когда становится невозможным говорить о том или ином спине или , а можно говорить лишь о полном моменте импульса системы. Более слабыми, но тем не менее отчетливо устанавливаемыми при исследовании спектров являются спин-вращательные и .

Для конденсир. сред наличие спинов частиц проявляется в магн. св-вах этих сред. При определенной т-ре возможно возникновение упорядоченного состояния спинов частиц ( , ), находящихся, напр., в узлах кристаллич. решетки, а следовательно, и связанных со спинами магн. моментов, что ведет к появлению у системы сильного парамагнетизма (ферромагнетизма, антиферромагнетизма). Нарушение упорядоченности спинов частиц проявляется в виде спиновых волн (см. ). Взаимод. собственных магн. моментов с упругими колебаниями среды наз. спин-фонон-ным взаимод. (см. ); оно определяет спин-решеточную и спин-фононное поглощение звука.

Вопреки расхожему мнению, спин - чисто квантовое явление. И тем более спин никак не связан с "вращением частицы" вокруг самой себя.

Чтобы понять правильно что такое спин, давайте сперва поймем, что такое частица. Из квантовой теории поля мы знаем, что частицы - это такие определенного типа возбуждения первичного состояния (вакуума), которые обладают определенными свойствами. В частности, некоторые из этих возбуждений обладают массой, которая очень напоминает нам традиционную массу из законов Ньютона. Некоторые из этих возбуждений обладают ненулевым зарядом, который получается так похож на заряд из законов Кулона.

Помимо свойств, которые имеют свои аналоги в классической физике (масса, заряд), получается так (в экспериментах), что эти возбуждения должны иметь еще одно свойство, которое не имеет абсолютно никаких аналогов в классической физике. Я поставлю акцент на этом еще раз: НИКАКИХ аналогов (это НЕ вращение частицы). При расчетах получилось так, что этот спин - не скалярная характеристика частицы, как масса или заряд, а другая (не векторная).

Получилось, что спин - это внутренняя характеристика такого возбуждения, которая по своим математическим свойствам (закону преобразования, например) очень похожа на квантовый момент.

Дальше пошло-поехало. Оказалось, что свойства таких возбуждений, их волновые функции очень сильно зависят от величины этого самого спина. Так частицу со спином 0 (например бозон Хиггса) можно описать однокомпонентной волновой функцией, а для частицы со спином 1/2 - должна быть двухкомпонентная функция (вектор-функция), соответствующая проекции спина на данную ось 1/2 или -1/2. Также оказалось, что спин несет в себе и фундаментальную разницу между частицами. Так для частиц с целым спином (0, 1, 2) имеет место закон распределения Бозе-Эйнштейна, который позволяет сколь угодно много частиц находится в одном квантовом состоянии. А для частиц с полуцелым спином (1/2, 3/2) из-за принципа запрета Паули действует распределение Ферми-Дирака, запрещающего двум частицам находиться на одном квантовом состоянии. Благодаря последнему, атомы имеют боровские уровни, из-за этого возможны связи и, следовательно, возможна жизнь.

Значит спин задаёт характеристику частице, как ей себя вести при взаимодействии с другими частицами. Фотон имеет спин равный 1 и много фотонов могут находиться очень близко к друг другу и не взаимодействовать между собой либо фотоны с глюонами, поскольку у последних также спин = 1 и так далее. А электроны, у которых спин 1/2 будут отталкиваться друг от друга (как учат в школе - от -, + от +.)Я правильно понял?

И ещё вопрос: а что задаёт самой частице спин или почему существует спин? Если спин описывает поведение частиц, то что описывает, делает возможным само появление спина (какие-либо бозоны (в том числе существующие гипотетически) или, так называемые, струны)?

Как в классической, так и в квантовой механике закон сохранения момента возникает как результат изотропии пространства по отношению к замкнутой системе. Уже в этом проявляется связь момента со свойствами симметрии по отношению к вращениям. Но в квантовой механике эта связь становится в особенности глубокой, делаясь по существу основным содержанием понятия о моменте, тем более, что классическое определение момента частицы как произведения теряет здесь свой непосредственный смысл в виду одновременной неизмеримости радиуса-вектора и импульса.

Мы видели в § 28, что задание значений l к определяет угловую зависимость волновой функции частицы, а тем самым - все ее свойства симметрии по отношению к вращениям. В наиболее общем виде формулировка этих свойств сводится к указанию закона преобразования волновых функций при поворотах системы координат.

Неизменной волновая функция системы частиц (с заданными значениями момента L и его проекции М) остается лишь при повороте системы координат вокруг оси . Всякий же поворот, меняющий направление оси , приводит к тому, что проекция момента на ось уже не будет иметь определенного значения. Это значит, что в новых координатных осях волновая функция превратится, вообще говоря, в суперпозицию (линейную комбинацию) функций, отвечающих различным возможным (при заданном L) значениям М. Можно сказать, что при поворотах системы координат функций преобразуются друг через друга. Закон этого преобразования, т. е. коэффициенты суперпозиции (как функции углов поворота координатных осей), полностью определяется заданием значения L. Таким образом, момент приобретает смысл квантового числа, классифицирующего состояния системы по их трансформационным свойствам по отношению к вращениям системы координат.

Этот аспект понятия момента в квантовой механике в особенности существен в связи с тем, что он не связан непосредственно с явной зависимостью волновых функций от углов; закон их преобразования друг через друга может быть сформулирован сам по себе, без ссылки на эту зависимость.

Рассмотрим сложную частицу (скажем, атомное ядро), покоящуюся как целое и находящуюся в определенном внутреннем состоянии. Помимо определенной внутренней энергии она обладает также и определенным по своей величине L моментом, связанным с движением частиц внутри нее; этот момент может еще иметь 2L + 1 различных ориентаций в пространстве. Другими словами, при рассмотрении движения сложной частицы как целого мы должны, наряду с ее координатами, приписывать ей еще и одну дискретную переменную - проекцию ее внутреннего момента на некоторое избранное направление в пространстве.

Но при указанном выше понимании смысла момента становится несущественным вопрос о его происхождении, и мы приходим естественным образом к представлению о «собственном» моменте, который должен быть приписан частице вне зависимости от того, является ли она «сложной» или «элементарной».

Таким образом, в квантовой механике элементарной частице следует приписывать некоторый «собственный» момент, не связанный с ее движением в пространстве. Это свойство элементарных частиц является специфически квантовым (исчезающим при переходе к пределу и поэтому принципиально не допускает классической интерпретации.

Собственный момент частицы называют ее спином, в отличие от момента, связанного с движением частицы в пространстве, о котором говорят как об орбитальном моменте. Речь может идти при этом как об элементарной частице, так и о частице, хотя и составной, но ведущей себя в том или ином рассматриваемом круге явлений как элементарная (например, об атомном ядре). Спин частицы (измеренный, как и орбитальный момент, в единицах й) будем обозначать посредством s.

Для частиц, обладающих спином, описание состояния с помощью волновой функции должно определять не только вероятности ее различных положений в пространстве, но и вероятности различных возможных ориентаций ее спина.

Другими словами, волновая функция должна зависеть не только от трех непрерывных переменных - координат частицы, но и от одной дискретной спиновой переменной, указывающей значение проекции спина на некоторое избранное направление в пространстве (ось ) и пробегающей ограниченное число дискретных значений (которые мы будем обозначать далее буквой ).

Пусть - такая волновая функция. По существу она представляет собой совокупность нескольких различных функций координат, отвечающих различным значениям а; об этих функциях мы будем говорить как о спиновых компонентах волновой функции. При этом интеграл

определяет вероятность частице иметь определенное значение а. Вероятность же частице находиться в элементе Объема имея произвольное значение а, есть

Квантовомеханический оператор спина при применении его к волновой функции действует именно на спиновую переменную . Другими словами, он каким-то образом преобразует друг через друга компоненты волновой функции. Вид этого оператора будет установлен ниже. Но, уже исходя из самых общих соображений, легко убедиться в том, что операторы удовлетворяют таким же условиям коммутации, как и операторы орбитального момента.

Оператор момента в основном совпадает с оператором бесконечно малого поворота. При выводе в § 26 выражения для оператора орбитального момента мы рассматривали результат применения операции поворота к функции координат. В случае спинового момента такой вывод теряет смысл, поскольку оператор спина действует на спиновую переменную, а не на координаты. Поэтому для получения искомых соотношений коммутации мы должны рассматривать операцию бесконечно малого поворота в общем виде, как поворот системы координат. Производя последовательно бесконечно малые повороты вокруг оси х и оси у, а затем вокруг этих же осей в обратном порядке, легко убедиться непосредственным вычислением, что разница между результатами обеих этих операций эквивалентна бесконечно малому повороту вокруг оси (на угол, равный произведению углов поворота вокруг осей х и у). Мы не станем производить здесь этих простых вычислений, в результате которых вновь получаются обычные соотношения коммутации между операторами компонент момента импульса, которые, следовательно, должны иметь место и для операторов спина:

со всеми вытекающими из них физическими следствиями.

Соотношения коммутации (54,1) дают возможность определить возможные значения абсолютной величины и компонент спина. Весь вывод, произведенный в § 27 (формулы (27,7)-(27,9)), был основан только на соотношениях коммутации и потому полностью применим и здесь; надо только вместо L в этих формулах подразумевать s. Из формул (27,7) следует, что собственные значения проекции спина образуют последовательность чисел, отличающихся на единицу. Мы не можем, однако, теперь утверждать, что сами эти значения должны быть целыми, как это имело место для проекции орбитального момента (приведенный в начале § 27 вывод здесь неприменим, поскольку он основан на выражении (26,14) для оператора , специфическом для орбитального момента).

Далее, последовательность собственных значений ограничена сверху и снизу значениями, одинаковыми по абсолютной величине и противоположными по знаку, которые мы обозначим посредством Разность между наибольшим и наименьшим значениями должна быть целым числом или нулем. Следовательно, число s может иметь значения 0, 1/2, 1, 3/2, ...

Таким образом, собственные значения квадрата спина равны

где s может быть либо целым числом (включая значение нуль), либо полуцелым. При заданном s компонента спина может пробегать значения - всего значений. Соответственно этому, и волновая функция частицы со спином s имеет компонент

Опыт показывает, что большинство элементарных частиц - электроны, позитроны, протоны, нейтроны, мезоны и все гипероны - обладают спином 1/2. Кроме того, существуют элементарные частицы - -мезоны и -мезоны, - обладающие спином 0.

Полный момент импульса частицы складывается из ее орбитального момента 1 и спина s. Их операторы, действуя на функции совершенно различных переменных, разумеется, коммутативны друг с другом.

Собственные значения полного момента

определяются тем же правилом «векторной модели», что и сумма орбитальных моментов двух различных частиц (§ 31).

Именно, при заданных значениях полный момент может иметь значения . Так, у электрона (спин 1/2) с отличным от нуля орбитальным моментом l полный момент может быть равен ; при момент имеет, конечно, лишь одно значение

Оператор полного момента J системы частиц равен сумме операторов моментов каждой из них, так что его значения опредег ляются снова правилами векторной модели. Момент J можно представить в виде

где S можно назвать полным спином, а L - полным орбитальным моментом системы.

Отметим, что если полный спин системы - полуцелый (или целый), то то же самое будет иметь место и для полного момента, поскольку орбитальный момент всегда целый. В частности, если система состоит из четного числа одинаковых частиц, то ее полный спин во всяком случае целый, а потому будет целым и полный момент.

Операторы полного момента частицы j (или системы частиц J) удовлетворяют тем же правилам коммутации, что и операторы орбитального момента или спина, поскольку эти правила являются вообще общими правилами коммутации, справедливыми для всякого момента импульса. Следующие из правил коммутации формулы (27,13) для матричных элементов момента тоже справедливы для всякого момента, если матричные элементы определять по отношению к собственным функциям этого же момента. Остаются справедливыми (с соответствующим изменением обозначений) также и формулы (29,7)-(29,10) для матричных элементов произвольных векторных величин.

Учитывая также, что найдем

При изучении спектра атома водорода обнаружили, что они имеют дуплетную структуру (каждая спектральная линия расщеплена на две полоски). Чтобы объяснить это явление предположили, что электрон обладает собственным механическим моментом импульса – спином (). Первоначально спин связывали с вращением электрона вокруг своей оси. Впоследствии выяснилось, что это ошибочно. Спин – это внутреннее квантовое свойство электрона – у него нет классического аналога. Спин квантуется по закону:

,

где - спиновое квантовое число.

По аналогии с орбитальным моментом импульса, проекция
спина квантуется так, что векторможет принимать
ориентаций. Так как спектральная линия расщепляется только на две части, то ориентацийтолько две:
, отсюда
. Проекция спина на выделенное направление определяется выражением:

,

где - магнитное квантовое число. Оно может иметь только два значения
.

Таким образом, опытные данные привели к необходимости введения спина. Поэтому для полного описания состояния электрона в атоме необходимо наряду с главным, орбитальным и магнитным квантовыми числами задавать еще магнитное спиновое квантовое число.

Принцип Паули. Распределение электронов в атоме по состояниям.

Состояние каждого электрона в атоме характеризуется четырьмя квантовыми числами:

(
1, 2, 3,…) – квантует энергию,

(
0, 1, 2,…,
) – квантует орбитальный механический момент,

(
0,
,
,…,
) – квантует проекцию момента импульса на заданное направление,

(
) – квантует проекцию спина на заданное направление
.

С возрастанием растет энергия. В нормальном состоянии атома электроны находятся на самых низких энергетических уровнях. Казалось бы, что все они должны быть в состоянии 1s. Но опыт показывает, что это не так.

Швейцарский физик В.Паули сформулировал принцип: в одном и том же атоме не может быть двух электронов с одинаковыми квантовыми числами ,,
,. То есть два электрона должны отличаться по крайней мере значениями одного квантового числа.

Значению соответствуетсостояний, отличающихся значениямии
. Но ещеимеет два значения
и
, значит всего
состояний. Поэтому в состояниях с заданныммогут находиться
электронов. Совокупность электронов с одинаковымназывается слоем, а с одинаковымии- оболочкой.

Поскольку орбитальное квантовое число принимает значения отдо
, число оболочек в слое равно. Количество электронов в оболочке определяется магнитным и спиновым квантовыми числами: максимальное число электронов в оболочке с заданнымравно
. Обозначение слоев и распределение электронов по слоям и оболочкам представлены в таблице 1.

Максимальное число электронов в оболочках

Макс. число электронов в слое






Пользуясь распределением электронов по состояниям можно объяснить периодический закон Менделеева. Каждый последующий атом имеет на один электрон больше, располагается он в состоянии с возможно меньшей энергией.

Периодическая система элементов начинается с простейшего атома водорода. Его единственный электрон находится в состоянии 1s, характеризуемом квантовыми числами
,
и
(ориентация спина произвольна).

В атоме
два электрона находятся в 1sсостоянии с антипараллельными спинами. На атоме
заканчивается заполнениеK-слоя, что соответствует завершению 1 периода Периодической системы Менделеева.

У атома
3 электрона. Согласно принципу Паули третий электрон уже не может разместиться в целиком заполненном слое К и занимает наинизшее энергетическое состояние с
(L-слой), то есть 2sсостояние. Электронная конфигурация для атома
: 12. Атомом
начинается 2 период Периодической системы Менделеева. Заканчивается 2 период инертным газом неоном. У атома неона полностью заполнена 2pоболочка и полностью заполнен слойL.

Одиннадцатый электрон
размещается вMслое (
), занимая наименьшее состояние 3s. Электронная конфигурация для
: 1223. Электрон 3s(как и 2sу лития) является валентным, поэтому свойства
подобны свойствам
.
завершает 3 период. Его электронная конфигурация
: 12233. Начиная с атома калия в застройке электронных оболочек происходит отклонение. Вместо заполнения 3dоболочки, заполняется сначала 4s(
: 122334). Это происходит потому, что оболочка 4sэнергетически выгоднее, ближе расположена к ядру, чем 3d. После заполнения 4sзаполняется 3d, а затем 4р оболочка, которая дальше от ядра, чем 3d.

С такими отклонениями приходится сталкиваться и дальше. Оболочка 4f, которая содержит 14 электронов, начинает заполняться после того, как заполняются 5s, 5p, 6s. В итоге у элементов 58-71 добавляющиеся электроны садятся в 4fсостояния, а внешние электронные оболочки у этих элементов одинаковы. Поэтому их свойства близки. Эти элементы называют лантанидами. Аналогично близки по свойствам актиниды (90-103), где заполняется 5fоболочка при неизменном 7.

Таким образом, открытая Менделеевым периодичность в химических свойствах элементов объясняется повторяемостью в структуре внешних оболочек у атомов родственных элементов.

Валентность химического элемента равна числу электронов в sили р оболочке с максимальнымn. Еслиs,p,d,… оболочки полностью заполнены, то их спины скомпенсированы. Такие элементы являются диамагнетиками. Если оболочки не полностью заполнены, то имеются не скомпенсированные спины. Это парамагнетики.

Итак, полностью абстрагируемся и забываем любые классические определения. Ибо спин – это понятие, присущее исключительно квантовому миру. Попробуем разобраться в том, что это такое.

Больше полезной информации для учащихся – у нас в телеграм .

Спин и момент импульса

Спин (от английского spin – вращаться) – собственный момент импульса элементарной частицы.

Теперь вспомним, что такое момент импульса в классической механике.

Момент импульса – это физическая величина, характеризующая вращательное движение, точнее, количество вращательного движения.

В классической механике момент импульса определяется как векторное произведение импульса частицы на ее радиус вектор:

По аналогии с классической механикой спин характеризует вращение частиц. Их представляют в виде волчков, вращающихся вокруг оси. Если частица имеет заряд, то, вращаясь, она создает магнитный момент и явлеятся своего рода магнитом.

Однако данное вращение нельзя трактовать классически. Все частицы помимо спина обладают внешним или орбитальным моментом импульса, характеризующим вращение частицы относительно какой-то точки. Например, когда частица движется по круговой траектории (электрон вокруг ядра).


Спин же является собственным моментом импульса , то есть характеризует внутреннее вращательное состояние частицы вне зависимости от внешнего орбитального момента импульса. При этом спин не зависит от внешних перемещений частицы .

Представить, что же там вращается внутри частицы, невозможно. Однако факт остается фактом – для заряженных частиц с разнонаправленными спинами траектории движения в магнитном поле будут различны.

Спиновое квантовое число

Для характеристики спина в квантовой физике введено спиновое квантовое число.

Спиновое квантовое число – одно из квантовых чисел, присущих частицам. Часто спиновое квантовое число называют просто спином. Однако следует понимать, что спин частицы (в понимании собственного момента импульса) и спиновое квантовое число – это не одно и то же. Спиновое число обозначается буквой J и принимает ряд дискретных значений, а само значение спина пропорционально приведенной постоянной Планка:

Бозоны и фермионы

Разным частицам присущи разные спиновые числа. Так, главное отличие состоит в том, что одни обладают целым спином, а другие – полуцелым. Частицы обладающие целым спином называются бозонами, а полуцелым – фермионами.

Бозоны подчиняются статистике Бозе-Эйнштейна, а фермионы – Ферми-Дирака. В ансамбле частиц, состоящем из бозонов, любое их количество может находиться в одинаковом состоянии. С фермионами все наоборот – наличие двух тождественных фермионов в одной системе частиц невозможно.


Бозоны: фотон, глюон, бозон Хиггса. - в отдельной статье.

Фермионы: электрон, лептон, кварк

Попробуем представить, чем отличаются частицы с разными спиновыми числами на примерах из макромира. Если спин объекта равен нулю, то его можно представить в виде точки. Со всех сторон, как ни вращай этот объект, он будет одинаков. При спине равном 1 поворот объекта на 360 градусов возвращает его в состояние, идентичное первоначальному состоянию.

Например, карандаш, заточенный с одной стороны. Спин равный 2 можно представить в виде карандаша, заточенного с двух сторон - при повороте такого карандаша на 180 градусов мы не заметим никаких изменений. А вот полуцелый спин равный 1/2 представляется объектом, для возвращения которого в первоначальное состояние нужно соверщить оборот в 720 градусов. Примером может служить точка, движущаяся по листу Мебиуса.


Итак, спин - квантовая характеристика элементарных частиц, которая служит для описания их внутреннего вращения, момент импульса частицы, не зависящий от ее внешних перемещений.

Надеемся, что вы осилите эту теорию быстро и сможете при случае применить знания на практике. Ну а если задачка по квантовой механике оказалось непосильно сложной или не можете не забывайте о студенческом сервисе , специалисты которого готовы прийти на выручку. Учитывая, что сам Ричард Фейнман сказал, что "в полной мере квантовую физику не понимает никто", обратиться за помощью к опытным специалистам – вполне естественно!




Top