Температура кипения. Кипение жидкости

Кипение – процесс интенсивного парообразования жидкости, включающий рождение пузырьков пара, их рост и движение к поверхности жидкости. Кипение, характеризующееся образованием пузырьков пара на поверхности соприкосновения жидкости с твердым телом, называется поверхностным. В реальных условиях мы всегда имеем дело с поверхностным кипением, которое происходит на границе между жидкостью и твердым телом, нагретым выше температуры кипения (нагреватель). При нагревании жидкости до начала кипения основная часть подводимой теплоты расходуется на нагревание, остальная – на испарение. Пусть температура дна сосуда T 1 , температура жидкости на свободной поверхности T 2 . До тех пор, пока температурный перепад невелик, теплота переносится в жидкой среде только путем теплопроводности. В этом случае, как мы знаем, стационарное распределение температуры в жидкости удовлетворяет одномерному уравнению теплопроводности (4.5.21). Решением этого уравнения является функция (4.5.23), т. е. температура жидкости падает линейно от дна сосуда (x = 0) до свободной поверхности (x = d ). При этом градиент температуры постоянен и равен (рис. 78, а ).

а б в

При дальнейшем повышении температуры дна сосуда T 1 растет и температурный градиент в жидкой среде. Когда последний достигнет определенной величины, возникает свободная конвекция, и теплота в жидкости начинает переноситься интенсивнее (свободная конвекция тепла возникает под действием архимедовых сил и заключается в переносе верти­кально вверх масс более нагретой жидкости и опускании на ее место менее нагретой). Теперь стационарное распределение температуры определяется известным уравнением конвективного теплообмена

, (5.7.1)

где – скорость жидкости при конвекции, a – коэффициент темпера-туропроводности. Считая скорость жидкости в первом приближении постоянной, приходим к экспоненциальному убыванию температуры с высотой (рис. 78, б ). Это приводит к значительному увеличению градиента температуры в жидкости на границе с горячим дном, и, таким образом, увеличивается теплоотдача к жидкости. Пусть, наконец, температура дна стала столь значительной, что на его поверхности начинают возникать паровые пузырьки, которые постепенно увеличиваются, отрываются и всплывают. В жидкости устанавливается процесс кипения. Как показывают опыты, теплообмен в этом случае становится еще более интенсивным. Вследствие этого падение температуры жидкости вблизи горячей твердой поверхности будет происходить еще круче, чем при конвекции (рис. 78, в ).



Процесс поверхностного кипения начинается на дне сосуда, граничащего с нагревателем. В порах дна сосуда всегда имеется воздух или другой растворенный газ, который является генератором будущих пузырьков пара. По мере испарения жидкости внутрь пузырьков, давление пара в них повышается, пузырек начинает расти. Уве­личение размеров пузырька происходит особенно быстро, когда при некоторой температуре T S давление p (T S ) насыщенного пара в нем становится равным или немного больше внешнего давления, т. е. p (T S ) = p внеш. Тогда пузырек отрывается от дна и под действием архимедовой силы поднимается к поверхности жидкости.

Внешнее давление p внеш слагается из атмосферного давления p 0 , гидростатического давления (ρ– плотность жидкости, h – глубина, на которой образуется пузырек) и давления Лапласа (R – радиус пузырька, – коэффициент поверхностного натяжения жидкости). Таким образом, процесс кипения начнется при условии, что давление насыщенных паров при данной температуре T S



Температуру T S жидкости, при которой давление p (T S ) ее насыщенного пара становится равным внешнему давлению p внеш на жидкость, называют температурой кипения этой жидкости. Из равенства

(5.7.3)

следует, что температура кипения является функцией внешнего давления. Поэтому сказать, что температура кипения данного вещества равна T S , без указания, при каком внешнем давлении она получена, некорректно.

Мы знаем, что давление насыщенного пара жидкости уменьшается при понижении температуры и увеличивается при ее повышении, следовательно, и температура кипения жидкости понижается при уменьшении внешнего давления и повышается при его увеличении. Таким образом, если некоторая функция выражает зависимость давления насыщенных паров от температуры, то функция, обратная ей, определяет зависимость температуры кипения от внешнего давления. Так как уравнение Клапейрона-Клаузиса

в дифференциальной форме выражает зависимость давления насыщенных паров от температуры, то уравнение

(5.7.4)

определяет в дифференциальной форме зависимость температуры кипе-

ния от внешнего давления, т. е. уравнение (5.7.4) является уравнением кривой кипения в дифференциальной форме. В этом уравнении dT – изменение температуры кипения жидкости при изменении внешнего давления на dp .

В заключение отметим: если продолжительным кипячением из жидкости удалить воздух или другой растворенный газ, то эту жидкость можно нагреть до температуры, значительно большей, чем температура ее кипения при данном внешнем давлении. Так, полученную жидкость называют перегретой. Если в перегретую жидкость внести неоднородности, к примеру, забросить в нее песчинки, в порах которых находится воздух, то жидкость бурно вскипает, напоминая взрыв.

73. Аморфное и кристаллическое состояние вещества. Симметрия твердых тел. Основные элементы симметрии твердых тел.

В физике различают аморфные и кристаллические твердые тела. По признаку сохранения формы аморфные тела относят к твердым, во всем остальном они не отличаются от жидкостей. Аморфные тела рассматривают как переохлажденные жидкости с аномально большим коэффициентом вязкости, благодаря которому они при обычной температуре не могут течь. Однако при повышении температуры они постепенно размягчаются, не имея определенной температуры плавления, и приобретают обычную для жидкостей способность течь. Свойства аморфных тел одинаковы по всем направлениям, т. е. они изотропны. К примеру, если из стекла (аморфное тело) изготовить шар, то его свойства окажутся одинаковыми в различных направлениях. Так, при сжатии его с одинаковой силой в разных направлениях, он будет уменьшаться на одинаковую величину. Если измерять теплопроводность стекла, нагревая шар сверху и охлаждая его снизу или нагревая слева и охлаждая справа, найдем, что теплопроводность стекла во всех направлениях также одинакова. Для лучей света, пронизывающих стекло по всем направлениям, показатель преломления также оказывается одинаковым. Если поместить стеклянный шар между двумя пластинами заряженного конденсатора и вращать шар вокруг его центра, то не будет отмечено никакого изменения емкости конденсатора; это значит, что диэлектрическая постоянная не зависит от направления электрического поля внутри его.

Совершенно иначе ведут себя кристаллические твердые тела. Кристаллы имеют определенную, зависящую от внешнего давления температуру плавления. Скорость распространения света, изотермический коэффициент сжатия, коэффициент теплопроводности, модуль упругости, диэлектрическая проницаемость и многие другие физические свойства кристалла сильно зависят от направления в нем.

Кристаллы можно получать различными способами, например, охлаждением жидкости. При таком охлаждении, если не принять специальных мер, в жидкой фазе возникает множество центров кристаллизации, вокруг которых происходит образование твердой фазы. Возникает множество мелких кристалликов, сливающихся друг с другом хаотически и образующих так называемый поликристалл. Хотя каждый из кристаллов, образующих поликристалл, анизотропен, но ввиду хаотичности ориентировки этих кристаллов поликристаллическое тело в целом является изотропным.

Если же в охлажденную жидкость ввести затравку – маленький кристаллик, то кристаллизация начнется на нем, и можно вырастить большой монокристалл правильной формы. Для этого необходимо, чтобы условия роста кристалла были одинаковы на всех его поверхностях, что может быть достигнуто вращением затравки в растворе. При выращивании больших монокристаллов металлов и полупроводников затравку очень медленно со скоростью несколько миллиметров в час выдвигают в вертикальном направлении из нагревательной печи.

Согласно закону, открытому в 1783 г. Роме де Лиллем, во всех кристаллах одного и того же вещества углы между соответственными гранями равны. Так, например, в кристаллах каменной соли (NaCl) все углы между гранями 90˚. Если из такого кристалла выточить шарик и поместить его в насыщенный раствор каменной соли, то кубическая форма кристалла будет стремиться восстановиться. Причиной такого восстановления формы кристаллов является хорошо известное условие устойчивости равновесия термодинамической системы: условие минимума потенциальной энергии. Для кристаллов это условие выражено в принципе, сформулированном Гиббсом, Кюри и Вульфом: поверхностная энергия должна быть минимальной. Этот минимум должен находиться при условии, что заданы углы между гранями кристалла.

При помещении кристалла в насыщенный раствор или в расплав между твердой и жидкой фазами устанавливается динамическое равновесие: атомы из твердой фазы переходят в жидкую фазу, а из жидкой – в твердую; но осаждение из жидкой фазы идет так, что образуется система с минимумом потенциальной энергии, т. е. образуется характерная для данного вещества форма кристалла и все бывшие нарушения этой формы исчезают, потому шарик в описанном опыте стремится превратиться вновь в кубическую структуру или другую характерную кристаллическую форму.

Если условия роста кристалла неодинаковы в разных точках его поверхности, то форма растущего кристалла может быть отлична от характерной формы, хотя углы между основными гранями остаются та­кими, как и при правильной форме.

Жидкость испаряется с открытой поверхности при любой температуре, при этом испарение происходит на границе раздела жидкости и пара.

Жидкость кипит при определенной температуре, определяемой давлением в газовой фазе, при этом парообразование

происходит во всем объеме жидкости; при кипении бурлит вся толща среды.

Несмотря на внешние различия, молекулярный механизм фазовых превращений при спокойном испарении и бурном кипении один и тот же - в обоих случаях имеет место выход части молекул из объема жидкости в объем, занимаемый паром.

Для кипения жидкости необходимо два условия: 1) наличие в ней парогазовых пузырьков, 2) повышение температуры до определенного предела (температуры кипения) и сообщение жидкости при этой температуре теплоты. Если жидкость полностью лишена пузырьков (зародышей газовой фазы), то в такой идеализированной среде кипения быть не может. В самом деле, кипение - это испарение в объеме жидкости, а для того чтобы оно имело место, необходимы полости (пузырьки), где могли бы накапливаться пары. Кипение может происходить только в том случае, если в жидкости существуют пузырьки (обычно на стенках сосуда). Пузырьки сначала могут быть очень малыми и невидимыми для глаза, но они принципиально необходимы для кипения.

Пока не наступило кипение, система жидкость - пузырьки находится в механическом равновесии. Рассмотрим условия механического равновесия пузырьков, «сидящих» на стенках или дне сосуда. Их два: 1) пузырек не должен всплывать (равновесие по высоте), 2) пузырек не должен раздавливаться (равновесие по объему). Первое условие требует, чтобы архимедова сила действующая на пузырек плотность жидкости, V - объем пузырька), была меньше той предельной силы сцепления которая возможна между пузырьком и стенкой сосуда: или

где есть то значение объема, при котором пузырек отрывается и всплывает.

Пузырек не раздавливается в том случае, если давление на стенки пузырька снаружи будет уравновешено давлением изнутри. Давление на пузырек складывается из атмосферного гидростатического (рис. 8.15, а) и капиллярного давление изнутри есть результат давления насыщенного пара жидкости и давления воздуха Равновесие по объему определяется равенством

При увеличении температуры давление насыщенного пара в пузырьке увеличивается, что приводит к расширению пузырька и соответственно уменьшению давления воздуха в нем, при этом условия (81.1) и (81.2) будут выполняться до некоторой определенной температуры. Действительно, при некоторой температуре объем пузырька увеличится настолько, что нарушится равновесие по высоте и пузырек всплывет, оставляя после себя зародыш нового пузырька (рис. 8.15, б). При повторных отрывах пузырьков от одних и тех же мест воздуха в них практически не будет. При всплытии пузырьков и их радиус делается достаточно большим, чтобы можно было пренебречь капиллярным давлением. Условие (81.2) для кипящей жидкости определяется равенством

Таким образом, при кипении жидкости давление ее насыщенного пара равно внешнему давлению. Если жидкость кипит при постоянном внешнем давлении, то ее температура остается неизменной. Теплота, подводимая к жидкости в процессе кипения, полностью идет на парообразование.

Можно выполнить условие кипения (81.3), не только нагревая жидкость, но и понижая давление при постоянной температуре. Если выкачивать воздух из колбы с водой (такая демонстрация легко осуществима), то этим можно вызвать кипение. Очевидно, что температура кипящей жидкости будет понижаться и может стать ниже комнатной температуры.

Температуру кипения жидкости при нормальном давлении атм) называют нормальной точкой кипения. Более высокой температурой кипения обладают те жидкости, у которых выше критические температуры.

Кипение приводит к уменьшению числа пузырьков в объеме жидкости. Можно еще более понизить количество пузырьков длительным встряхиванием жидкости или ее обработкой давлением до 400 атм. В первом случае пузырьки отрываются от стенок и дна сосуда и всплывают на поверхность, во втором случае содержание пузырьков растворяется в жидкости (пузырьки раздавливаются). Обработанная таким способом жидкость способна значительно перегреваться по отношению к нормальной точке кипения. В частности, при атмосферном давлении удалось нагреть специально обработанную воду до 170° (при нормальной точке кипения 100°С), и вода при этом не кипела.

Выше было сказано, что наличие парогазовых пузырьков - необходимое условие кипения жидкостей. Это справедливо только вдали от критической точки, когда плотности жидкости и пара сильно различаются между собой. Но по мере повышения температуры и давления различие в плотностях жидкости и пара уменьшается, в жидкости вследствие теплового движения молекул усилятся так называемые флюктуации плотности - местные уплотнения и разрежения, возникающие и исчезающие в различных точках среды.

Флюктуации, связанные с понижением плотности, очевидно, и будут служить центрами образования пузырьков, заполненных паром.

Перегретая жидкость закипает очень бурно, часто со взрывом, при этом происходит быстрое охлаждение до нормальной при данном давлении температуры кипения. Перегрев жидкости в известной мере является опасным, особенно в котельных установках, поэтому принимают специальные меры для предотвращения перегрева: в жидкость помещают пористые тела, выделяющие при нагревании воздух (необожженный фарфор, капиллярные трубки и т. д).

Cтраница 1


Кипение жидкости происходит при одинаковой температуре всей жидкости, когда давление насыщающего пара равно внешнему давлению.  

Кипение жидкости наступает тогда, когда упругость ее паров, насыщающих пространство, будет равна внешнему давлению.  

Кипение жидкости на поверхности нагрева наблюдается в том случае, когда температура поверхности tc выше температуры насыщения tH при данном давлении. Различают пузырчатый и пленочный режимы кипения.  

Кипение жидкости при комнатной температуре и пониженном давлении также используется в технике. В частности, в СССР изобретена стиральная машина, работающая на этом принципе.  

Кипение жидкости должно протекать спокойно. Образующийся иодид олова облегчает кипение.  

Кипение жидкости, которое является частным случаем испарения, наблюдается ири той температуре, при которой давление насыщенных паров становится равным внешнему давлению. Температура кипения жидкости при нормальном давлении называется точкой кипения жидкости. Чтобы жидкость продолжала кипеть, необходимо непрерывно ее подогревать. Эта затрата тепла не повышает энергии движения молекул, потому и не обнаруживается термометром. Количество теплоты, которое необходимо затратить, чтобы 1 г или 1 кг жидкости при температуре ее кипения перевести в пар той же температуры, называется удельной теплотой парообразования.  

Кипение жидкости и конденсация пара служат примерами фазовых переходов первого рода. Характерная особенность всех фазовых переходов первого рода состоит в том, что в этих процессах одновременно постоянны давление и температура, но зато изменяется соотношение между массами двух фаз. Второй особенностью этих процессов является то, что для их осуществления необходимо подводить к системе или отводить от нее некоторое количество теплоты, называемое теплотой фазового перехода.  


Кипение жидкости происходит тогда, когда давление ее паров равно внешнему давлению.  

Кипение жидкости начинается, когда упругость ее паров становится равной внешнему давлению. Если это давление понизить, то соответственно снизится и упругость паров, требующаяся для кипения, а более низкая упругость паров достигается при более низкой температуре нагрева.  

Кипение жидкости происходит при равенстве давления ее насыщенного пара давлению среды. В данном случае это давление в аппарате, в котором находится жидкость.  

Кипение жидкости зачастую характеризуется нерегулярным взрывным движением. Как это получается в соответствии со сказанным выше.  

Кипение жидкостей приводит к нарушению сплошности среды, поэтому значения параметров, при которых оно наступает, определяют границу применимости всех выводов, основанных на гипотезе сплошности.  

Кипение жидкостей также связано с поверхностными явлениями: при кипении происходит испарение жидкости внутрь воздушных пузырьков, которые имеются как в объеме самой жидкости, так и на границе со стенками сосуда. Рассмотрим механизм кипения; на рис. 2.47 показаны различные стадии развития воздушных пу зырьков, прикрепившихся к стенке сосуда. По мере испарения жидкости внутрь этих пузырьков давление пара в них повышается, внешнее и гидростатическое давления преодолеваются, и пузырек начинает расти вверх. При этом поверхностные силы, деформируя пузырек, отделяют от него некоторую часть, которая архимедовой силой поднимается вверх и освобождает содержащийся в ней пар на поверхности жидкости. Оставшаяся часть пузырька продолжает играть роль резервуара для накапливания пара и генератора новых пузырьков пара.  

Кипение жидкости происходит при постоянной температуре, которая зависит от давления. При кипении образуются пузыри пара, которые появляются на поверхности нагрева. Превышение средней температуры жидкости над температурой пара составляет Д / (0 2 - 2) С. Температура поверхности tf, омываемой кипящей жидкостью, может превышать среднюю температуру кипящей жидкости на несколько десятков градусов.  

Кипение – процесс перехода вещества из жидкого в газообразное состояние (парообразование в жидкости). Кипение не является испарением : оно отличается тем, что может происходить только при определенном давлении и температуре.

Кипячение – нагревание воды до температуры кипения.

Кипение воды является сложным процессом, который происходит в четыре стадии . Рассмотрим пример кипения воды в открытом стеклянном сосуде.

На первой стадии кипения воды на дне сосуда появляются небольшие пузырьки воздуха, которые также можно заметить и на поверхности воды по бокам.

Эти пузырьки образуются в результате расширения небольших пузырей воздуха, которые находятся в мелких трещинах сосуда.

На второй стадии наблюдается увеличение объема пузырьков: все больше пузырьков воздуха рвется на поверхность. Внутри пузырьков находится насыщенный пар.

Как только повышается температура, возрастает давление насыщенных пузырьков, в результате чего они увеличиваются в размере. Как следствие, повышается действующая на пузыри архимедова сила.

Именно благодаря этой силе пузырьки стремятся к поверхности воды. Если верхний слой воды не успел прогреться до 100 градусов С (а это и есть температура кипения чистой воды без примесей), то пузырьки опускаются вниз в более горячие слои, после чего они снова устремляются назад на поверхность.

Ввиду того, что пузыри постоянно уменьшаются и увеличиваются в размере, внутри сосуда возникают звуковые волны, которые создают характерный для кипения шум.

На третьей стадии на поверхность воды поднимается огромное количество пузырьков, что вначале вызывает небольшое помутнение воды, которая затем «бледнеет». Данный процесс продолжается недолго и имеет название «кипение белым ключом».

Наконец, на четвертой стадии кипения вода начинает интенсивно бурлить, появляются большие лопающиеся пузыри и брызги (как правило, брызги означают, что вода сильно перекипела).

Из воды начинает образовываться водяной пар, при этом вода издает специфические звуки.

Почему «цветут» стены и «плачут» окна? Очень часто в этом виноваты строители, неправильно рассчитавшие точку росы. Читайте статью чтобы узнать, насколько это важное физическое явление, и как все-таки избавиться от излишней сырости в доме?

Какую пользу может принести талая вода для желающего похудеть? Об этом вы узнаете , оказывается, худеть можно без особых усилий!

Температура пара при кипении воды ^

Пар – это газообразное состояние воды. Когда пар поступает в воздух, то он, как и другие газы, оказывает на него определенное давление.

В процессе парообразования величина температуры пара и воды будет оставаться постоянной до тех пор, пока не испарится вся вода. Такое явление объясняется тем, что вся энергия (температура) направлена на превращение воды в пар.

В данном случае образуется сухой насыщенный пар. Высокодисперсные частицы жидкой фазы в таком паре отсутствуют. Также пар может быть насыщенным влажным и перегретым .

Насыщенный пар с содержанием взвешенных высокодисперсных частиц жидкой фазы , которые равномерно распределены по всей массе пара, называется влажным насыщенным паром .

В начале закипания воды образуется именно такой пар, который затем переходит в сухой насыщенный. Пар, температура которого больше температуры кипящей воды, а точнее перегретый пар, можно получить только с использованием специального оборудования. При этом такой пар будет близок по своим характеристикам к газу .

Температура кипения соленой воды ^

Температура кипения соленой воды превышает температуру кипения пресной воды . Как следствие соленая вода закипает позднее пресной . В соленой воде присутствуют ионы Na+ и Cl-, которые занимают определенную область между молекулами воды.

В соленой воде молекулы воды присоединяются к ионам соли – данные процесс имеет название «гидратация». Связь между молекулами воды значительно слабее связи, образовавшейся в процессе гидратации.

Поэтому при кипении из молекул пресной воды парообразование происходит быстрее.

На закипание воды с растворенной солью потребуется больше энергии, в качестве которой в данном случае выступает температура.

По мере увеличения температуры молекулы в соленой воде начинаются двигаться быстрее, но при этом их становится меньше, ввиду чего они сталкиваются реже. В результате образуется меньше пара, давление которого ниже, нежели у пара пресной воды.

Для того чтобы в соленой воде давление стало выше атмосферного и начался процесс кипения, необходима более высокая температура. При добавлении 60 граммов соли в воду объемом 1 литр температура кипения увеличится на 10 С.

  • Олег

    А здесь ошиблись на 3 порядка «Удельная теплота испарения воды равна 2260 Дж/кг.» Правильно кДж, т.е. в 1000 раз больше.

  • Настя

    Чем объясняется высокая температура кипения воды?
    Из-за чего вода кипит при высокой температуре?

  • IamJiva

    Перегретый пар, это пар с температурой выше 100С(ну если вы не в горах или вакууме, а при нормальных условиях), его получают пропуская пар через раскаленные трубки, либо проще — от кипящего раствора соли или щелочи(опасно — щелочь крепче Na2CO3(например поташ — K2CO3 почему остатки NaOH за день-два становятся не опасными для глаз, в отличие от окарбонатившихся на воздухе остатков KOH)омыляет глаза, не забудьте надеть плавательные очки!), но р-ры такие кипят толчками, нужны кипелки и тонкий слой на дне, воду можно добавлять при выкипании, выкипает только она.
    так из соленой воды можно получить при кипении пар с температурой около 110С, не хуже такого-же из горячей 110С трубы, пар этот содержит лишь воду и нагрет, каким способом он не помнит, но на 10С имеет «запас хода» в сравнении с паром из чайника пресной воды.
    Его можно называть сухим, т.к. согрев(контактируя как в трубе, или даже излучением, свойственным не только солнцу но и любому телу в некоторой(температурно зависимой) степени) некий предмет, пар может охладившись до 100С все еще оставаться газом, и только дальнейшее охлаждение ниже 100С вызовет его конденсацию в каплю воды, и почти вакуум(давление насыщенного пара воды около 20мм рт ст из 760мм рт ст(1 атм), тоесть в 38 раз ниже атмосферного давления, это происходит и с неперегретым, насыщенным паром с температурой 100С в прогревшемся сосуде(чайник из носика которого валит пар), и не только с водой, а с любым кипящим веществом, например медицинский эфир кипит ужЕ при температуре тела, и может кипеть в колбе в ладони, из горлышка которой будут «фонтанировать» его парЫ, заметно преломляющие свет, если теперь второй ладонью закрыть колбу, и убрать нагрев нижней ладони, заменив ее подставкой с температурой ниже 35С, эфир перестанет кипеть, а его насыщенный пар, вытолкнувший при кипении весь воздух из колбы, сконденсируется в каплю эфира, создав вакуум не сильнее чем тот от которого эфир закипает, то-есть примерно равный давлению насыщенного пара эфира при температуре самой холодной точки внутри колбы, или присоединенного к ней без утечек второго сосуда или шланга с закрытым дальним концом, так устроен прибор Криофор, демонстрирующий принцип холодной стенки, как сладкая липучка — пчёл, захватывающей все молекулы пара в системе.(«вакуумный спирт» так гонят, без нагрева)

    А при более 1700 Цельсия вода очень так хорошо разлогается на кислород и водород…бада-бум получается, ни нада ею плескать на всякие там горящие металлическо-сикамбричнеские конструкции

  • В разделе на вопрос Что называют температурой кипение жидкости? заданный автором Косоворотка лучший ответ это температуру кипения жидкости
    Анна
    Мыслитель
    (8819)
    Что не понятного??? Температура кипения. При какой температуре жидкость закипает, мозгами шивили маненько!!!

    Ответ от Вровень [новичек]
    (точка кипения) - температура, при которой жидкость столь интенсивно превращается в пар (т. е. газ), что в ней образуются паровые пузырьки, которые поднимаются на поверхность и лопаются. Бурное образование пузырьков во всем объеме жидкости и называется кипением. В отличие от простого испарения при кипении жидкость переходит в пар не только со свободной поверхности, но и по всему объему - внутрь образующихся пузырьков. Температура кипения любой жидкости постоянна при заданном атмосферном или ином внешнем давлении, но повышается с повышением давления и понижается с его понижением. Например, при нормальном атмосферном давлении, равном 100 кПа (таково давление на уровне моря), температура кипения воды составляет 100° С. На высоте же 4000 м над уровнем моря, где давление падает до 60 кПа, вода кипит примерно при 85° С, и для того, чтобы сварить пищу в горах, требуется больше времени. По той же причине пища готовится быстрей в кастрюле-"скороварке": давление в ней повышается, а вслед за этим повышается и температура кипящей вод


    Ответ от Просунуться [новичек]
    температура при которой жидкость превращается в газ



    
    Top