Условия влияющие на смещение химического равновесия. Смещение химического равновесия. Принцип Ле-Шателье

Темы кодификатора : обратимые и необратимые реакции. Химическое равновесие. Смещение химического равновесия под действием различных факторов.

По возможности протекания обратной реакции химические реакции делят на обратимые и необратимые.

Обратимые химические реакции — это реакции, продукты которых при данных условиях могут взаимодействовать друг с другом.

Необратимые реакции — это реакции, продукты которых при данных условиях взаимодействовать друг с другом не могут.

Более подробно про классификацию химических реакций можно прочитать .

Вероятность взаимодействия продуктов зависит от условий проведения процесса.

Так, если система открытая , т.е. обменивается с окружающей средой и веществом, и энергией, то химические реакции, в которых, например, образуются газы, будут необратимыми. Например , при прокаливании твердого гидрокарбоната натрия:

2NaHCO 3 → Na 2 CO 3 + CO 2 + H 2 O

будет выделяться газообразный углекислый газ и улетучиваться из зоны проведения реакции. Следовательно, такая реакция будет необратимой при данных условиях. Если же рассмотреть замкнутую систему , которая не может обмениваться веществом с окружающей средой (например, закрытый ящик, в котором происходит реакция), то углекислый газ не сможет улететь из зоны проведения реакции, и будет взаимодействовать с водой и карбонатом натрия, то реакция будет обратимой при данных условиях:

2NaHCO 3 ⇔ Na 2 CO 3 + CO 2 + H 2 O

Рассмотрим обратимые реакции . Пусть обратимая реакция протекает по схеме:

aA + bB = cC + dD

Скорость прямой реакции по закону действующих масс определяется выражением: v 1 =k 1 ·C A a ·C B b , скорость обратной реакции: v 2 =k 2 ·C С с ·C D d . Если в начальный момент реакции в системе нет веществ C и D, то сталкиваются и взаимодействуют преимущественно частицы A и B, и идет преимущественно прямая реакция. Постепенно концентрация частиц C и D также начнет повышаться, следовательно, скорость обратной реакции будет расти. В какой-то момент скорость прямой реакции станет равна скорости обратной реакции . Это состояние и называют химическим равновесием .

Таким образом, химическое равновесие — это такое состояние системы, при котором скорости прямой и обратной реакции равны .

Т.к. скорости прямо и обратной реакции равны, скорость образования веществ равна скорости их расходования, и текущие концентрации веществ не изменяются . Такие концентрации называют равновесными .

Обратите внимание, при равновесии идет и прямая, и обратная реакции , то есть реагенты взаимодействуют друг с другом, но и продукты взаимодействуют с такой же скоростью. При этом внешние факторы могут воздействовать и смещать химическое равновесие в ту или иную сторону. Поэтому химическое равновесие называют подвижным, или динамическим.

Исследования в области подвижного равновесия начались еще в XIX веке. В трудах Анри Ле-Шателье были заложены основы теории, которые позже обобщил ученый Карл Браун. Принцип подвижного равновесия, или принцип Ле-Шателье-Брауна, гласит:

Если на систему, находящуюся в состоянии равновесия, воздействовать внешним фактором, который изменяет какое-либо из условий равновесия, то в системе усиливаются процессы, направленные на компенсацию внешнего воздействия.

Иными словами: при внешнем воздействии на систему равновесие сместится так, чтобы компенсировать это внешнее воздействие.

Этот принцип, что очень важно, работает для любых равновесных явлений (не только химических реакций). Однако мы сейчас рассмотрим его применительно к химическим взаимодействиям. В случае химических реакций внешнее воздействие приводит к изменению равновесных концентраций веществ.

На химические реакции в состоянии равновесия могут воздействовать три основных фактора — температура, давление и концентрации реагентов или продуктов.

1. Как известно, химические реакции сопровождаются тепловым эффектом. Если прямая реакция идет с выделением теплоты (экзотермическая, или +Q), то обратная — с поглощением теплоты (эндотермическая, или -Q), и наоборот. Если повышать температуру в системе, равновесие сместится так, чтобы это повышение компенсировать. Логично, что при экзотермической реакции повышение температуры компенсировать не получится. Таким образом, при повышении температуры равновесие в системе смещается в сторону поглощения теплоты, т.е. в сторону эндотермических реакций (-Q); при понижении температуры — в сторону экзотермической реакции (+Q).

2. В случае равновесных реакций, когда хотя бы одно из веществ находится в газовой фазе, на равновесие также существенно влияет изменение давления в системе. При повышении давления химическая система пытается компенсировать это воздействие, и увеличивает скорость реакции, в которой количество газообразных веществ уменьшается. При понижении давления система увеличивает скорость реакции, в которой образуется больше молекул газообразных веществ. Таким образом: при увеличении давления равновесие смещается в сторону уменьшения числа молекул газов, при уменьшении давления — в сторону увеличения числа молекул газов .

Обратите внимание! На системы, где число молекул газов-реагентов и продуктов одинаково, давление не оказывает воздействие! Также изменение давления практически не влияет на равновесие в растворах, т.е. на реакции, где газов нет.

3. Также на равновесие в химических системах влияет изменение концентрации реагирующих веществ и продуктов. При повышении концентрации реагентов система пытается их израсходовать, и увеличивает скорость прямой реакции. При понижении концентрации реагентов система пытается их наработать, и увеличивается скорость обратной реакции. При повышении концентрации продуктов система пытается их также израсходовать, и увеличивает скорость обратной реакции. При понижении концентрации продуктов химическая система пувеличивает скорость их образования, т.е. скорость прямой реакции.

Если в химической системе увеличивается скорость прямой реакции вправо , в сторону образования продуктов и расходования реагентов . Если увеличивается скорость обратной реакции , мы говорим, что равновесие сместилось влево , в сторону расходования продуктов и увеличения концентрации реагентов .

Например , в реакции синтеза аммиака:

N 2 + 3H 2 = 2NH 3 + Q

повышение давления приводит к увеличению скорости реакции, в которой образуется меньшее число молекул газов, т.е. прямой реакции (число молекул газов-реагентов равно 4, число молекул газов в продуктах равно 2). При повышении давления равновесие смещается вправо, в сторону продуктов. При повышении температуры равновесие сместится в сторну эндотермической реакции , т.е. влево, в сторону реагентов. Увеличение концентрации азота или водорода сместит равновесие в сторону их расходования, т.е. вправо, в сторону продуктов.

Катализатор не влияет на равновесие, т.к. ускоряет и прямую, и обратную реакции.

Изучение параметров системы, включающей исходные вещества и продукты реакции, позволяет выяснить, какие факторы смещают химическое равновесие и ведут к желаемым изменениям. На выводах Ле Шателье, Брауна и других ученых о способах проведения обратимых реакций основаны промышленные технологии, позволяющие осуществить ранее казавшиеся невозможными процессы, получить экономическую выгоду.

Разнообразие химических процессов

По особенностям теплового эффекта многие реакции относят к экзо- или эндотермическим. Первые идут с образованием теплоты, например, окисление углерода, гидратация концентрированной серной кислоты. Второй тип изменений связан с поглощением тепловой энергии. Примеры эндотермических реакций: распад карбоната кальция с образованием гашеной извести и углекислого газа, образование водорода и углерода при термическом разложении метана. В уравнениях экзо- и эндотермических процессов необходимо указывать тепловой эффект. Перераспределение электронов между атомами реагирующих веществ происходит в окислительно-восстановительных реакциях. Четыре типа химических процессов выделяют по особенностям реагентов и продуктов:

Для характеристики процессов важна полнота взаимодействия реагирующих соединений. Этот признак лежит в основе деления реакций на обратимые и необратимые.

Обратимость реакций

Обратимые процессы составляют большинство среди химических явлений. Образование конечных продуктов из реагентов является прямой реакцией. В обратной же исходные вещества получаются из продуктов своего разложения или синтеза. В реагирующей смеси возникает химическое равновесие, при котором получается столько же соединений, сколько разлагается исходных молекул. В обратимых процессах вместо знака «=» между реагентами и продуктами используются символы «↔» или «⇌». Стрелки могут быть неодинаковыми по длине, что связано с доминированием одной из реакций. В химических уравнениях можно указывать агрегатные характеристики веществ (г — газы, ж — жидкости, т — твердые). Огромное практическое значение имеют научно обоснованные приемы влияния на обратимые процессы. Так, производство аммиака стало рентабельным после создания условий, сдвигающих равновесие в сторону образования целевого продукта: 3Н 2(г) + N 2(г) ⇌ 2NH 3(г) . Необратимые явления приводят к появлению нерастворимого или малорастворимого соединения, образованию газа, покидающего сферу реакции. К таким процессам можно отнести ионный обмен, распад веществ.

Химическое равновесие и условия его смещения

На характеристики прямого и обратного процессов влияет несколько факторов. Один из них — время. Концентрация взятого для реакции вещества постепенно снижается, а конечного соединения — возрастает. Реакция прямого направления идет все медленнее, обратный процесс набирает скорость. В определенный промежуток два противоположных процесса идут синхронно. Взаимодействие между веществами происходит, но концентрации не меняются. Причина — динамическое химическое равновесие, установившееся в системе. Его сохранение или изменение зависит от:

  • температурных условий;
  • концентрации соединений;
  • давления (для газов).

Смещение химического равновесия

В 1884 году выдающийся ученый из Франции А. Л. Ле Шателье предложил описание способов вывода системы из состояния динамического равновесия. В основе метода лежит принцип нивелирования действия внешних факторов. Ле Шателье обратил внимание, что в реагирующей смеси возникают процессы, компенсирующие влияние посторонних сил. Сформулированный французским исследователем принцип гласит, что изменение условий в состоянии равновесия благоприятствует протеканию реакции, ослабляющей постороннее воздействие. Смещение равновесия подчиняется этому правилу, оно соблюдается, когда меняется состав, температурные условия и давление. Технологии, основанные на выводах ученых, используются в промышленности. Многие химические процессы, считавшиеся практически неосуществимыми, проводятся благодаря способам смещения равновесия.

Влияние концентрации

Сдвиг равновесия происходит, если изъять из зоны взаимодействия определенные компоненты или дополнительно ввести порции вещества. Удаление продуктов из реакционной смеси обычно вызывает увеличение скорости их образования, добавление веществ, наоборот, приводит к их преимущественному распаду. В процессе этерификации для обезвоживания используют серную кислоту. При введении ее в сферу реакции повышается выход метилацетата: СН 3 СООН + СН 3 ОН ↔ СН 3 СООСН 3 + Н 2 О. Если добавлять кислород, взаимодействующий с диоксидом серы, то химическое равновесие смещается в сторону прямой реакции образования триоксида серы. Кислород связывается в молекулы SO 3 , его концентрация понижается, что согласуется с правилом Ле Шателье для обратимых процессов.

Изменение температуры

Процессы, идущие с поглощением или выделением тепла, — эндо- и экзотермические. Для смещения равновесия используется нагревание или отвод тепла от реагирующей смеси. Рост температуры сопровождается повышением скорости эндотермических явлений, в которых дополнительная энергия поглощается. Охлаждение приводит к преимуществу экзотермических процессов, идущих с выделением тепла. При взаимодействии диоксида углерода с углем нагревание сопровождается увеличением концентрации монооксида, а охлаждение ведет к преимущественному образованию сажи: СО 2(г) + С (т) ↔ 2СО (г) .

Влияние давления

Изменение давления — важный фактор для реагирующих смесей, включающих в себя газообразные соединения. Также следует обратить внимание на разницу объемов исходных и получившихся веществ. Понижение давления ведет к преимущественному протеканию явлений, в которых увеличивается общий объем всех компонентов. Рост давления направляет процесс в сторону снижения объема всей системы. Такая закономерность соблюдается в реакции образования аммиака: 0,5N 2(г) + 1,5Н 2(г) ⇌ NH 3(г) . Изменение давления не повлияет на химическое равновесие в тех реакциях, которые идут при неизменном объеме.

Оптимальные условия осуществления химического процесса

Создание условий для смещения равновесия во многом определяет развитие современных химических технологий. Практическое использование научной теории способствует получению оптимальных результатов производства. Наиболее яркий пример — получение аммиака: 0,5N 2(г) + 1,5Н 2(г) ⇌ NH 3(г) . Повышение содержания в системе молекул N 2 и Н 2 благоприятно для синтеза сложного вещества из простых. Реакция сопровождается выделением теплоты, поэтому снижение температуры вызовет увеличение концентрации NH 3 . Объем исходных компонентов больше, чем целевого продукта. Рост давления обеспечит повышение выхода NH 3 .

В условиях производства подбирают оптимальное соотношение всех параметров (температуры, концентрации, давления). Кроме того, имеет большое значение площадь соприкосновения между реагентами. В твердых гетерогенных системах увеличение поверхности ведет к росту скорости реакции. Катализаторы увеличивают скорость прямой и обратной реакции. Применение веществ с такими свойствами не приводит к смещению химического равновесия, но ускоряет его наступление.

Химические реакции бывают обратимые и необратимые.

т.е. если некоторая реакция A + B = C + D необратима, это значит, что обратная реакция C + D = A + B не протекает.

т.е., например, если некая реакция A + B = C + D обратима, это значит, что одновременно протекает как реакция A + B → C + D (прямая), так и реакция С + D → A + B (обратная).

По сути, т.к. протекают как прямая, так и обратная реакции, реагентами (исходными веществами) в случае обратимых реакций могут быть названы как вещества левой части уравнения, так и вещества правой части уравнения. То же самое касается и продуктов.

Для любой обратимой реакции возможна ситуация, когда скорость прямой и обратной реакций равны. Такое состояние называют состоянием равновесия .

В состоянии равновесия концентрации как всех реагентов, так и всех продуктов неизменны. Концентрации продуктов и реагентов в состоянии равновесия называют равновесными концентрациями .

Смещение химического равновесия под действием различных факторов

Вследствие таких внешних воздействий на систему, как изменение температуры, давления или концентрации исходных веществ или продуктов, равновесие системы может быть нарушено. Однако после прекращения этого внешнего воздействия система через некоторое время перейдет в новое состояние равновесия. Такой переход системы из одного равновесного состояния в другое равновесное состояние называют смещением (сдвигом) химического равновесия .

Для того чтобы уметь определять, каким образом сдвигается химическое равновесие при том или ином типе воздействия, удобно пользоваться принципом Ле Шателье:

Если на систему в состоянии равновесия оказать какое-либо внешнее воздействие, то направление смещения химического равновесия будет совпадать с направлением той реакции, которая ослабляет эффект от оказанного воздействия.

Влияние температуры на состояние равновесия

При изменении температуры равновесие любой химической реакции смещается. Связано это с тем, что любая реакция имеет тепловой эффект. При этом тепловые эффекты прямой и обратной реакции всегда прямо противоположны. Т.е. если прямая реакция является экзотермической и протекает с тепловым эффектом, равным +Q, то обратная реакция всегда эндотермична и имеет тепловой эффект, равный –Q.

Таким образом, в соответствии с принципом Ле Шателье, если мы повысим температуру некоторой системы, находящейся в состоянии равновесия, то равновесие сместится в сторону той реакции, при протекании которой температура понижается, т.е. в сторону эндотермической реакции. И аналогично, в случае, если мы понизим температуру системы в состоянии равновесия, равновесие сместится в сторону той реакции, в результате протекания которой температура будет повышаться, т.е. в сторону экзотермической реакции.

Например, рассмотрим следующую обратимую реакцию и укажем, куда сместится ее равновесие при понижении температуры:

Как видно из уравнения выше, прямая реакция является экзотермической, т.е. в результате ее протекания выделяется тепло. Следовательно, обратная реакция будет эндотермической, то есть протекает с поглощением тепла. По условию температуру понижают, следовательно, смещение равновесия будет происходить вправо, т.е. в сторону прямой реакции.

Влияние концентрации на химическое равновесие

Повышение концентрации реагентов в соответствии с принципом Ле Шателье должно приводить к смещению равновесия в сторону той реакции, в результате которой реагенты расходуются, т.е. в сторону прямой реакции.

И наоборот, если концентрацию реагентов понижают, то равновесие будет смещаться в сторону той реакции, в результате которой реагенты образуются, т.е. сторону обратной реакции (←).

Аналогичным образом влияет и изменение концентрации продуктов реакции. Если повысить концентрацию продуктов, равновесие будет смещаться в сторону той реакции, в результате которой продукты расходуются, т.е. в сторону обратной реакции (←). Если же концентрацию продуктов, наоборот, понизить, то равновесие сместится в сторону прямой реакции (→), для того чтобы концентрация продуктов возросла.

Влияние давления на химическое равновесие

В отличие от температуры и концентрации, изменение давления оказывает влияние на состояние равновесия не каждой реакции. Для того чтобы изменение давления приводило к смещению химического равновесия, суммы коэффициентов перед газообразными веществами в левой и в правой частях уравнения должны быть разными.

Т.е. из двух реакций:

изменение давления способно повлиять на состояние равновесия только в случае второй реакции. Поскольку сумма коэффициентов перед формулами газообразных веществ в случае первого уравнения слева и справа одинаковая (равна 2), а в случае второго уравнения – различна (4 слева и 2 справа).

Отсюда, в частности, следует, что если среди и реагентов, и продуктов отсутствуют газообразные вещества, то изменение давления никак не повлияет на текущее состояние равновесия. Например, давление никак не повлияет на состояние равновесия реакции:

Если же слева и справа количество газообразных веществ различается, то повышение давления будет приводить к смещению равновесия в сторону той реакции, при протекании которой объем газов уменьшается, а понижение давления – в сторону той реакции, в результате которой объем газов увеличивается.

Влияние катализатора на химическое равновесие

Поскольку катализатор в равной мере ускоряет как прямую, так и обратную реакции, то его наличие или отсутствие никак не влияет на состояние равновесия.

Единственное, на что может повлиять катализатор, — это на скорость перехода системы из неравновесного состояния в равновесное.

Воздействие всех указанных выше факторов на химическое равновесие сведено ниже в таблицу-шпаргалку, в которую поначалу можно подглядывать при выполнении заданий на равновесия . Однако же пользоваться на экзамене ей не будет возможности, поэтому после разбора нескольких примеров с ее помощью, ее следует выучить и тренироваться решать задания на равновесия, уже не подглядывая в нее:

Обозначения: T – температура, p – давление, с – концентрация, — повышение, ↓ — понижение

Катализатор

T

Т — равновесие смещается в сторону эндотермической реакции
↓Т — равновесие смещается в сторону экзотермической реакции

p

p — равновесие смещается в сторону реакции с меньшей суммой коэффициентов перед газообразными веществами
↓p — равновесие смещается в сторону реакции с большей суммой коэффициентов перед газообразными веществами

c

c (реагента) – равновесие смещается в сторону прямой реакции (вправо)
↓c (реагента) – равновесие смещается в сторону обратной реакции (влево)
c (продукта) – равновесие смещается в сторону обратной реакции (влево)
↓c (продукта) – равновесие смещается в сторону прямой реакции (вправо)
На равновесие не влияет!!!

Если система находится в состоянии равновесия, то она будет пребывать в нем до тех пор, пока внешние условия сохраняются постоянными. Если же условия изменятся, то система выйдет из равновесия - скорости прямого и обратного процессов изменятся неодинаково - будет протекать реакция. Наибольшее значение имеют случаи нарушения равновесия вследствие изменения концентрации какого-либо из веществ, участвующих в равновесии, давления или температуры.

Рассмотрим каждый из этих случаев.

Нарушение равновесия вследствие изменения концентрации какого-либо из веществ, участвующих в реакции. Пусть водород, иодоводород и пары иода находятся в равновесии друг с другом при определенных температуре и давлении. Введем в систему дополнительно некоторое количество водорода. Согласно закону действия масс, увеличение концентрации водорода повлечет за собой увеличение скорости прямой реакции - реакции синтеза HI, тогда как скорость обратной реакции не изменится. В прямом направлении реакция будет теперь протекать быстрее, чем в обратном. В результате этого концентрации водорода и паров иода будут уменьшаться, что повлечет за собою замедление прямой реакции, а концентрация HI будет возрастать, что вызовет ускорение обратной реакции. Через некоторое время скорости прямой и обратной реакций вновь сравняются- установится новое равновесие. Но при этом концентрация HI будет теперь выше, чем она была до добавления , а концентрация - ниже.

Процесс изменения концентраций, вызванный нарушением равновесия, называется смещением или сдвигом равновесия. Если при этом происходит увеличение концентраций веществ, стоящих в правой части уравнения (и, конечно, одновременно уменьшение концентраций веществ, стоящих слева), то говорят, что равновесие смещается вправо, т. е. в направлении течения прямой реакции; при обратном изменении концентраций говорят о смещении равновесия влево - в направлении обратной реакции. В рассмотренном примере равновесие сместилось вправо. При этом то вещество , увеличение концентрации которого вызвало нарушение равновесия, вступило в реакцию - его концентрация понизилась.

Таким образом, при увеличении концентрации какого-либо из веществ, участвующих в равновесии, равновесие смещается в сторону расхода этого вещества; при уменьшении концентрации какого-либо из веществ равновесие смещается в сторону образования этого вещества.

Нарушение равновесия вследствие изменения давления (путем уменьшения или увеличения объема системы). Когда в реакции участвуют газы, равновесие может нарушиться при изменении объема системы.

Рассмотрим влияние давления на реакцию между монооксидом азота и кислородом:

Пусть смесь газов , и находится в химическом равновесии при определенной температуре и давлении. Не изменяя температуры, увеличим давление так, чтобы объем системы уменьшился в 2 раза. В первый момент парциальные давления и концентрации всех газов возрастут вдвое, но при этом изменится соотношение между скоростями прямой и обратной реакций - равновесие нарушится.

В самом деле, до увеличения давления концентрации газов имели равновесные значения , и , а скорости прямой и обратной реакций были одинаковы и определялись уравнениями:

В первый момент после сжатия концентрации газов увеличатся вдвое по сравнению с их исходными значениями и будут равны соответственно , и . При этом скорости прямой и обратной реакций будут определяться уравнениями:

Таким образом, в результате увеличения давления скорость прямой реакции возросла в 8 раз, а обратной - только в 4 раза. Равновесие в системе нарушится - прямая реакция будет преобладать над обратной. После того как скорости сравняются, вновь установится равновесие, но количество в системе возрастет, равновесие сместится вправо.

Нетрудно видеть, что неодинаковое изменение скоростей прямой и обратной реакций связано с тем, что в левой и в правой частях уравнения рассматриваемой реакции различно число молекул газов: одна молекула кислорода и две молекулы монооксида азота (всего три молекулы газов) превращаются в две молекулы газа - диоксида азота. Давление газа есть результат ударов его молекул о стенки сосуда; при прочих равных условиях давление газа тем выше, чем больше молекул заключено в данном объеме газа. Поэтому реакция, протекающая с увеличением числа молекул газов, приводит к возрастанию давления, а реакция, протекающая с уменьшением числа молекул газов, - к его понижению.

Помня об этом, вывод о влиянии давления на химическое равновесие можно сформулировать так:

При увеличении давления путем сжатия системы равновесие сдвигается в сторону уменьшения числа молекул газов, т. е. в сторону понижения давления, при уменьшении давления равновесие сдвигается в сторону возрастания числа молекул газов, т. е. в сторону увеличения давления.

В том случае, когда реакция протекает без изменения числа молекул газов, равновесие не нарушается при сжатии или при расширении системы. Например, в системе

равновесие не нарушается при изменении объема; выход HI не зависит от давления.

Нарушение равновесия вследствие изменения температуры. Равновесие подавляющего большинства химических реакций сдвигается при изменении температуры. Фактором, который определяет направление смещения равновесия, является при этом знак теплового эффекта реакции. Можно показать, что при повышении температуры равновесие смещается в направлении эндотермической, а при понижении - в направлении экзотермической реакции.

Так, синтез аммиака представляет собой экзотермическую реакцию

Поэтому при повышении температуры равновесие в системе сдвигается влево - в сторону разложения аммиака, так как этот процесс идет с поглощением теплоты.

Наоборот, синтез оксида азота (II) представляет собой эндотермическую реакцию:

Поэтому при повышении температуры равновесие в системе сдвигается вправо - в сторону образования .

Закономерности, которые проявляются в рассмотренных примерах нарушения химического равновесия, представляют собою частные случаи общего принципа, определяющего влияние различных факторов на равновесные системы. Этот принцип, известный под названием принципа Ле Шателье, в применении к химическим равновесиям можно сформулировать так:

Если на систему, находящуюся в равновесии, оказать какое-либо воздействие, то в результате протекающих в ней процессов равновесие сместится в таком направлении, что оказанное воздействие уменьшится.

Действительно, при введении в систему одного из веществ, участвующих в реакции, равновесие смещается в сторону расхода этого вещества. "При повышении давления оно смещается так, что давление в системе снижается; при повышении температуры равновесие смещается в сторону эндотермической реакции - температура в системе падает.

Принцип Ле Шателье распространяется не только на химические, но и на различные физико-химические равновесия. Смещение равновесия при изменении условий таких процессов, как кипение, кристаллизация, растьорение, происходит в соответствии с принципом Ле Шателье.

Химическое равновесие, отвечающее равенству скоростей прямой и обратной реакций ( = ) и минимальному значению энергии Гиббса (∆ G р,т = 0), является наиболее устойчивым состоянием системы при заданных условиях и остается неизменным до тех пор, пока сохраняются постоянными параметры, при которых равновесие установилось.

При изменении условий равновесие нарушается и смещается в сторону прямой или обратной реакции. Смещение равновесия связано с тем, что внешнее воздействие в разной степени изменяет скорость двух взаимно противоположных процессов. Через некоторое время система вновь становится равновесной, т.е. она переходит из одного равновесного состояния в другое. Новое равновесие характеризуется новым равенством скоростей прямой и обратной реакций и новыми равновесными концентрациями всех веществ в системе.

Направление смещения равновесия в общем случае определяется принципом Ле Шателье: если на систему, находящуюся в состоянии устойчивого равновесия, оказать внешнее воздействие, то смещение равновесия происходит в сторону процесса, ослабляющего эффект внешнего воздействия .

Смещение равновесия может быть вызвано изменением температуры, концентрации (давления) одного из реагентов.

Температура – тот параметр, от которого зависит величина константы равновесия химической реакции. Вопрос смещения равновесия при изменении температуры в зависимости от условий использования реакции решается путем использования уравнения изобары (1.90) - =

1. Для изотермического процесса ∆ r Н 0 (т) < 0, в правой части выражения (1.90) R > 0, T > 0, следовательно первая производная логарифма константы равновесия по температуре отрицательна < 0, т.е. ln Kp (и сама константа Кр) являются убывающими функциями температуры. При увеличении температуры константа химического равновесия (Кр) уменьшается и что согласно закону действующих масс (2.27), (2.28)соответствует смещению химического равновесия в сторону обратной (эндотермической) реакции. Именно в этом проявляется противодействие системы оказанному воздействию.

2. Для эндотермического процесса ∆ r Н 0 (т) > 0 производная логарифма константы равновесия по температуре положительна ( > 0), тема образом ln Kp и Кр являются возрастающими функциями температуры, т.е. в соответствии с законом действующих масс при увеличении температуры равновесие смещается в сторону прямой (эндотермической реакции). Однако надо помнить, что скорость как изотермического так и эндотермического процессов при повышении температуры возрастает, а при понижении понижается, но изменение скоростей и при изменении температуры неодинаково, поэтому, варьируя температуру, можно смещать равновесия в заданном направлении. Смещение равновесия может быть вызвано изменением концентрации одного из компонентов: добавлением вещества в равновесную систему или выводом из системы.

По принципу Ле Шателье при изменении концентрации одного из участников реакции равновесие смещается в сторону компенсирующую изменение, т.е. при увеличении концентрации одного из исходных веществ – в правую сторону, а при увеличении концентрации одно из продуктов реакции – в левую. Если в обратимой реакции участвуют газообразные вещества, то при изменении давления, одинаково и одновременно изменяются все их концентрации. Изменяются и скорости процессов, а следовательно, может произойти и смещение химического равновесия. Так, например, при увеличении давления (по сравнению с равновесным) на систему СаСО 3(К) СО (к) + СО 2(г) возрастает скорость обратной реакции = что приведет к смещению равновесия в левую сторону. При понижении давления на туже систему скорость обратной реакции уменьшается, и равновесие смещается в правую сторону. При увеличении давления на систему 2HCl H 2 +Cl 2 , находящуюся в состоянии равновесия, смещение равновесия не произойдет, т.к. обе скорости и возрастут одинаково.

Для системы 4HCl + О 2 2Cl 2 + 2Н 2 О (г) увеличение давления приведет к увеличению скорости прямой реакции и смещению равновесия вправо.

И так, в соответствии с принципом Ле Шателье при повышении давления равновесие смещается в сторону образования меньшего количества молей газообразных веществ в газовой смеси и соответственно в сторону уменьшения давления в системе.

И наоборот, при внешнем воздействии, вызывающем понижение давления, равновесие смещается в сторону образования большего количества молей газообразных веществ, что вызовет увеличение давления в системе и будет противодействовать произведенному воздействию.

Принцип Ле Шателье имеет большое практическое значение. На его основе можно подобрать такие условия осуществления химического взаимодействия, которые обеспечат максимальный выход продуктов реакции.




Top