Явление электромагнитной индукции. Электромагнитная индукция

Подробности Категория: Электричество и магнетизм Опубликовано 24.05.2015 20:43 Просмотров: 6300

Электрические и магнитные явления тесно связаны. И если ток порождает магнетизм, то должно существовать и обратное явление - появление электрического тока при движении магнита. Так рассуждал английский учёный Майкл Фарадей , в 1822 г. сделавший в своём лабораторном дневнике следующую запись: «Превратить магнетизм в электричество».

Этому событию предшествовало открытие явления электромагнетизма датским физиком Хансом Кристианом Эрстедом, обнаружившим возникновение магнитного поля вокруг проводника с током. Много лет Фарадей проводил различные эксперименты, но первые опыты не принесли ему удачи. Основная причина была в том, что учёный не знал, что лишь переменное магнитное поле способно создать электрический ток. Реальный результат удалось получить лишь в 1831 г.

Опыты Фарадея

Нажать на картинку

В опыте, проделанном 29 августа 1931 г., учёный обмотал витками проводов противоположные стороны жел езного кольца. Один провод он соединил с гальванометром. В момент подключения второго провода к батарее стрелка гальванометра резко отклонялась и возвращалась в исходное положение. Такая же картина наблюдалась и при размыкании контакта с батареей. Это означало, что в цепи появлялся электрический ток. Он возникал в результате того, что силовые линии магнитного поля, созданного витками первого провода, пересекали витки второго провода и генерировали в них ток.

Опыт Фарадея

Через несколько недель был проведен опыт с постоянным магнитом. Фарадей подключил гальванометр к катушке из медной проволоки. Затем резким движением втолкнул внутрь магнитный стержень цилиндрической формы. В этот момент стрелка гальванометра также резко качнулась. Когда стержень извлекался из катушки, стрелка качнулась также, но в противоположную сторону. И так происходило каждый раз, когда магнит вталкивался или выталкивался из катушки. То есть ток появлялся в контуре при движении магнита в нём. Так Фарадею удалось «превратить магнетизм в электричество».

Фарадей в лаборатории

Ток в катушке появляется также, если вместо постоянного магнита внутри неё перемещать другую катушку, подключенную к источнику тока.

Во всех этих случаях происходило изменение магнитного потока, пронизывающего контур катушки, что приводило к появлению электрического тока в замкнутом контуре. Это явление навали электромагнитной индукцией , а ток – индукционным током .

Известно, что ток в замкнутом контуре существует, если в нём поддерживает разность потенциалов с помощью электродвижущей силы (ЭДС). Следовательно, при изменении магнитного потока в контуре такая ЭДС в нём и возникает. Она называется ЭДС индукции .

Закон Фарадея

Майкл Фарадей

Величина электромагнитной индукции не зависит от того, по какой причине меняется магнитный поток – изменяется ли само магнитное поле или контур движется в нём. Она зависит от скорости изменения магнитного потока, пронизывающего контур.

где ε – ЭДС, действующая вдоль контура;

Ф В – магнитный поток.

На величину ЭДС катушки в переменном магнитном поле влияет число витков в ней и величина магнитного потока. Закон Фарадея в этом случае выглядит так:

где N число витков;

Ф В – магнитный поток через один виток;

Ψ – потокосцепление, или суммарный магнитный поток, сцепляющийся со всеми витками катушки.

Ψ = N ·Ф i

Ф i – поток, проходящий через один виток.

Даже слабый магнит может создать большой ток индукции, если скорость движения этого магнита высока.

Так как индукционный ток возникает в проводниках при изменении магнитного потока, пронизывающего их, то в проводнике, который движется в неподвижном магнитном поле, он появится тоже. Направление тока индукции в этом случае зависит от направления движения проводника и определяется по правилу правой руки: «Если расположить ладонь правой руки таким образом, чтобы в неё входили силовые линии магнитного поля, а отогнутый на 90 0 большой палец показывал бы направление движения проводника, то вытянутые 4 пальца укажут направление индуцированной ЭДС и направление тока в проводнике ».

Правило Ленца

Эмилий Христианович Ленц

Направление тока индукции определяется по правилу, которое действует во всех случаях, когда такой ток возникает. Это правило сформулировал российский физик балтийского происхождения Эмилий Христианович Ленц: «Индукционный ток, возникающий в замкнутом контуре, имеет такое направление, что создаваемый им магнитный поток противодействует изменению того магнитного потока, который этот ток вызвал.

Нужно заметить, что такой вывод был сделан учёным на основании результатов опытов. Ленц создал прибор, состоящий из свободно вращающейся алюминиевой пластинки, на одном конце которой было закреплено сплошное кольцо из алюминия, а на другом – кольцо с надрезом.

Если магнит приближали к сплошному кольцу, оно отталкивалось и начинало «убегать».

Нажать на картинку

При отдалении магнита кольцо стремилось догнать его.

Нажать на картинку

Ничего подобного не наблюдалось с разрезанным кольцом.

Ленц объяснил это тем, что в первом случае индукционный ток создаёт магнитное поле, линии индукции которого направлены противоположно линиям индукции внешнего магнитного поля. Во втором случае линии индукции магнитного поля, созданного индукционным током, совпадают по направлению с линиями индукции поля постоянного магнита. В разрезанном кольце ток индукции не возникает, поэтому оно не может взаимодействовать с магнитом.

Согласно правилу Ленца при увеличении внешнего магнитного потока индукционный ток будет иметь такое направление, что созданное им магнитное поле будет препятствовать такому увеличению. Если же внешний магнитный поток уменьшается, то магнитное поле индукционного тока будет поддерживать его и не давать ему уменьшаться.

Генератор электрического тока

Генератор переменного тока

О ткрытие Фарадеем электромагнитной индукции позволило использовать это явление на практике.

Что произойдёт, если вращать катушку с большим количеством витков из металлической проволоки в неподвижном магнитном поле? Магнитный поток, пронизывающий контур катушки, будет постоянно меняться. И в ней возникнет ЭДС электромагнитной индукции. Значит, такая конструкция может вырабатывать электрический ток. На этом принципе основана работа генераторов переменного тока .

Генератор состоит из 2 частей – ротора и статора. Ротор - это подвижная часть. В генераторах малой мощности чаще всего вращается постоянный магнит. В мощных генераторах вместо постоянного магнита используют электромагнит. Вращаясь, ротор создаёт изменяющийся магнитный поток, который и генерирует электрический ток индукции в витках обмотки, расположенной в пазах неподвижной части генератора – статоре. Ротор приводят во вращение двигателем. Это может быть паровая машина, водяная турбина и др.

Трансформатор

Это, пожалуй, самые распространённое устройство в электротехнике, предназначенное для преобразования электрического тока и напряжения. Трансформаторы используются в радиотехнике и электронике. Без них невозможна передача электроэнергии на большие расстояния.

Простейший трансформатор состоит из двух катушек, имеющих общий металлический сердечник. Переменный ток, подаваемый на одну из катушек, создаёт в ней переменное магнитное поле, которое усиливается сердечником. Магнитный поток этого поля, пронизывая витки второй катушки, создаёт в ней индукционный электрический ток. Так как величина ЭДС индукции зависит от числа витков, то меняя их соотношение в катушках, можно менять и величину тока. Это очень важно, например, при передаче электроэнергии на большие расстояния. Ведь при транспортировке происходят большие потери, из-за того, что провода нагреваются. Уменьшив с помощью трансформатора ток, эти потери снижают. Но при этом напряжение увеличивается. На конечном этапе с помощью понижающего трансформатора снижают напряжение и увеличивают ток. Конечно, такие трансформаторы устроены гораздо сложнее.

Нельзя не сказать о том, что не только Фарадей пытался создать индукционный ток. Подобные эксперименты проводил также известный американский физик Джозеф Генри. И ему удалось добиться успеха практически одновременно с Фарадеем. Но Фарадей опередил его, опубликовав сообщение о сделанном им открытии раньше Генри.

Темы кодификатора ЕГЭ : явление электромагнитной индукции, магнитный поток, закон электромагнитной индукции Фарадея, правило Ленца.

Опыт Эрстеда показал, что электрический ток создаёт в окружающем пространстве магнитное поле. Майкл Фарадей пришёл к мысли, что может существовать и обратный эффект: магнитное поле, в свою очередь, порождает электрический ток.

Иными словами, пусть в магнитном поле находится замкнутый проводник; не будет ли в этом проводнике возникать электрический ток под действием магнитного поля?

Через десять лет поисков и экспериментов Фарадею наконец удалось этот эффект обнаружить. В 1831 году он поставил следующие опыты.

1. На одну и ту же деревянную основу были намотаны две катушки; витки второй катушки были проложены между витками первой и изолированы. Выводы первой катушки подключались к источнику тока, выводы второй катушки - к гальванометру (гальванометр - чувствительный прибор для измерения малых токов). Таким образом, получались два контура: «источник тока - первая катушка» и «вторая катушка - гальванометр».

Электрического контакта между контурами не было, только лишь магнитное поле первой катушки пронизывало вторую катушку.

При замыкании цепи первой катушки гальванометр регистрировал короткий и слабый импульс тока во второй катушке.

Когда по первой катушке протекал постоянный ток, никакого тока во второй катушке не возникало.

При размыкании цепи первой катушки снова возникал короткий и слабый импульс тока во второй катушке, но на сей раз в обратном направлении по сравнению с током при замыкании цепи.

Вывод .

Меняющееся во времени магнитное поле первой катушки порождает (или, как говорят, индуцирует ) электрический ток во второй катушке. Этот ток называется индукционным током .

Если магнитное поле первой катушки увеличивается (в момент нарастания тока при замыкании цепи), то индукционный ток во второй катушке течёт в одном направлении.

Если магнитное поле первой катушки уменьшается (в момент убывания тока при размыкании цепи), то индукционный ток во второй катушке течёт в другом направлении.

Если магнитное поле первой катушки не меняется (постоянный ток через неё), то индукционного тока во второй катушке нет.

Обнаруженное явление Фарадей назвал электромагнитной индукцией (т. е. «наведение электричества магнетизмом»).

2. Для подтверждения догадки о том, что индукционный ток порождается переменным магнитным полем, Фарадей перемещал катушки друг относительно друга. Цепь первой катушки всё время оставалась замкнутой, по ней протекал постоянный ток, но за счёт перемещения (сближения или удаления) вторая катушка оказывалась в переменном магнитном поле первой катушки.

Гальванометр снова фиксировал ток во второй катушке. Индукционный ток имел одно направление при сближении катушек, и другое - при их удалении. При этом сила индукционного тока была тем больше, чем быстрее перемещались катушки .

3. Первая катушка была заменена постоянным магнитом. При внесении магнита внутрь второй катушки возникал индукционный ток. При выдвигании магнита снова появлялся ток, но в другом направлении. И опять-таки сила индукционного тока была тем больше, чем быстрее двигался магнит.

Эти и последующие опыты показали, что индукционный ток в проводящем контуре возникает во всех тех случаях, когда меняется «количество линий» магнитного поля, пронизывающих контур. Сила индукционного тока оказывается тем больше, чем быстрее меняется это количество линий. Направление тока будет одним при увеличении количества линий сквозь контур, и другим - при их уменьшении.

Замечательно, что для величины силы тока в данном контуре важна лишь скорость изменения количества линий. Что конкретно при этом происходит, роли не играет - меняется ли само поле, пронизывающее неподвижный контур, или же контур перемещается из области с одной густотой линий в область с другой густотой.

Такова суть закона электромагнитной индукции. Но, чтобы написать формулу и производить расчёты, нужно чётко формализовать расплывчатое понятие «количество линий поля сквозь контур».

Магнитный поток

Понятие магнитного потока как раз и является характеристикой количества линий магнитного поля, пронизывающих контур.

Для простоты мы ограничиваемся случаем однородного магнитного поля. Рассмотрим контур площади , находящийся в магнитном поле с индукцией .

Пусть сначала магнитное поле перпендикулярно плоскости контура (рис. 1 ).

Рис. 1.

В этом случае магнитный поток определяется очень просто - как произведение индукции магнитного поля на площадь контура:

(1)

Теперь рассмотрим общий случай, когда вектор образует угол с нормалью к плоскости контура (рис. 2 ).

Рис. 2.

Мы видим, что теперь сквозь контур «протекает» лишь перпендикулярная составляющая вектора магнитной индукции (а та составляющая, которая параллельна контуру, не «течёт» сквозь него). Поэтому, согласно формуле (1), имеем . Но , поэтому

(2)

Это и есть общее определение магнитного потока в случае однородного магнитного поля. Обратите внимание, что если вектор параллелен плоскости контура (то есть ), то магнитный поток становится равным нулю.

А как определить магнитный поток, если поле не является однородным? Укажем лишь идею. Поверхность контура разбивается на очень большое число очень маленьких площадок, в пределах которых поле можно считать однородным. Для каждой площадки вычисляем свой маленький магнитный поток по формуле (2) , а затем все эти магнитные потоки суммируем.

Единицей измерения магнитного потока является вебер (Вб). Как видим,

Вб = Тл · м = В · с. (3)

Почему же магнитный поток характеризует «количество линий» магнитного поля, пронизывающих контур? Очень просто. «Количество линий» определяется их густотой (а значит, величиной - ведь чем больше индукция, тем гуще линии) и «эффективной» площадью, пронизываемой полем (а это есть не что иное, как ). Но множители и как раз и образуют магнитный поток!

Теперь мы можем дать более чёткое определение явления электромагнитной индукции, открытого Фарадеем.

Электромагнитная индукция - это явление возникновения электрического тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего контур .

ЭДС индукции

Каков механизм возникновения индукционного тока? Это мы обсудим позже. Пока ясно одно: при изменении магнитного потока, проходящего через контур, на свободные заряды в контуре действуют некоторые силы - сторонние силы , вызывающие движение зарядов.

Как мы знаем, работа сторонних сил по перемещению единичного положительного заряда вокруг контура называется электродвижущей силой (ЭДС): . В нашем случае, когда меняется магнитный поток сквозь контур, соответствующая ЭДС называется ЭДС индукции и обозначается .

Итак, ЭДС индукции - это работа сторонних сил, возникающих при изменении магнитного потока через контур, по перемещению единичного положительного заряда вокруг контура .

Природу сторонних сил, возникающих в данном случае в контуре, мы скоро выясним.

Закон электромагнитной индукции Фарадея

Сила индукционного тока в опытах Фарадея оказывалась тем больше, чем быстрее менялся магнитный поток через контур.

Если за малое время изменение магнитного потока равно , то скорость изменения магнитного потока - это дробь (или, что тоже самое, производная магнитного потока по времени).

Опыты показали, что сила индукционного тока прямо пропорциональна модулю скорости изменения магнитного потока:

Модуль поставлен для того, чтобы не связываться пока с отрицательными величинами (ведь при убывании магнитного потока будет ). Впоследствии мы это модуль снимем.

Из закона Ома для полной цепи мы в то же время имеем: . Поэтому ЭДС индукции прямо пропорциональна скорости изменения магнитного потока:

(4)

ЭДС измеряется в вольтах. Но и скорость изменения магнитного потока также измеряется в вольтах! Действительно, из (3) мы видим, что Вб/с = В. Стало быть, единицы измерения обеих частей пропорциональности (4) совпадают, поэтому коэффициент пропорциональности - величина безразмерная. В системе СИ она полагается равной единице, и мы получаем:

(5)

Это и есть закон электромагнитной индукции или закон Фарадея . Дадим его словесную формулировку.

Закон электромагнитной индукции Фарадея . При изменении магнитного потока, пронизывающего контур, в этом контуре возникает ЭДС индукции, равная модулю скорости изменения магнитного потока .

Правило Ленца

Магнитный поток, изменение которого приводит к появлению индукционного тока в контуре, мы будем называть внешним магнитным потоком . А само магнитное поле, которое создаёт этот магнитный поток, мы будем называть внешним магнитным полем .

Зачем нам эти термины? Дело в том, что индукционный ток, возникающий в контуре, создаёт своё собственное магнитное поле, которое по принципу суперпозиции складывается с внешним магнитным полем.

Соответственно, наряду с внешним магнитным потоком через контур будет проходить собственный магнитный поток, создаваемый магнитным полем индукционного тока.

Оказывается, эти два магнитных потока - собственный и внешний - связаны между собой строго определённым образом.

Правило Ленца . Индукционный ток всегда имеет такое направление, что собственный магнитный поток препятствует изменению внешнего магнитного потока .

Правило Ленца позволяет находить направление индукционного тока в любой ситуации.

Рассмотрим некоторые примеры применения правила Ленца.

Предположим, что контур пронизывается магнитным полем, которое возрастает со временем (рис. (3) ). Например, мы приближаем снизу к контуру магнит, северный полюс которого направлен в данном случае вверх, к контуру.

Магнитный поток через контур увеличивается. Индукционный ток будет иметь такое направление, чтобы создаваемый им магнитный поток препятствовал увеличению внешнего магнитного потока. Для этого магнитное поле, создаваемое индукционным током, должно быть направлено против внешнего магнитного поля.

Индукционный ток течёт против часовой стрелки, если смотреть со стороны создаваемого им магнитного поля. В данном случае ток будет направлен по часовой стрелке, если смотреть сверху, со стороны внешнего магнитного поля, как и показано на (рис. (3) ).

Рис. 3. Магнитный поток возрастает

Теперь предположим, что магнитное поле, пронизывающее контур, уменьшается со временем (рис. 4 ). Например, мы удаляем магнит вниз от контура, а северный полюс магнита направлен на контур.

Рис. 4. Магнитный поток убывает

Магнитный поток через контур уменьшается. Индукционный ток будет иметь такое направление, чтобы его собственный магнитный поток поддерживал внешний магнитный поток, препятствуя его убыванию. Для этого магнитное поле индукционного тока должно быть направлено в ту же сторону , что и внешнее магнитное поле.

В этом случае индукционный ток потечёт против часовой стрелки, если смотреть сверху, со стороны обоих магнитных полей.

Взаимодействие магнита с контуром

Итак, приближение или удаление магнита приводит к появлению в контуре индукционного тока, направление которого определяется правилом Ленца. Но ведь магнитное поле действует на ток! Появится сила Ампера, действующая на контур со стороны поля магнита. Куда будет направлена эта сила?

Если вы хотите хорошо разобраться в правиле Ленца и в определении направления силы Ампера, попробуйте ответить на данный вопрос самостоятельно. Это не очень простое упражнение и отличная задача для С1 на ЕГЭ. Рассмотрите четыре возможных случая.

1. Магнит приближаем к контуру, северный полюс направлен на контур.
2. Магнит удаляем от контура, северный полюс направлен на контур.
3. Магнит приближаем к контуру, южный полюс направлен на контур.
4. Магнит удаляем от контура, южный полюс направлен на контур.

Не забывайте, что поле магнита не однородно: линии поля расходятся от северного полюса и сходятся к южному. Это очень существенно для определения результирующей силы Ампера. Результат получается следующий.

Если приближать магнит, то контур отталкивается от магнита. Если удалять магнит, то контур притягивается к магниту. Таким образом, если контур подвешен на нити, то он всегда будет отклоняться в сторону движения магнита, словно следуя за ним. Расположение полюсов магнита при этом роли не играет .

Уж во всяком случае вы должны запомнить этот факт - вдруг такой вопрос попадётся в части А1

Результат этот можно объяснить и из совершенно общих соображений - при помощи закона сохранения энергии.

Допустим, мы приближаем магнит к контуру. В контуре появляется индукционный ток. Но для создания тока надо совершить работу! Кто её совершает? В конечном счёте - мы, перемещая магнит. Мы совершаем положительную механическую работу, которая преобразуется в положительную работу возникающих в контуре сторонних сил, создающих индукционный ток.

Итак, наша работа по перемещению магнита должна быть положительна . Это значит, что мы, приближая магнит, должны преодолевать силу взаимодействия магнита с контуром, которая, стало быть, является силой отталкивания .

Теперь удаляем магнит. Повторите, пожалуйста, эти рассуждения и убедитесь, что между магнитом и контуром должна возникнуть сила притяжения.

Закон Фарадея + Правило Ленца = Снятие модуля

Выше мы обещали снять модуль в законе Фарадея (5) . Правило Ленца позволяет это сделать. Но сначала нам нужно будет договориться о знаке ЭДС индукции - ведь без модуля, стоящего в правой части (5) , величина ЭДС может получаться как положительной, так и отрицательной.

Прежде всего, фиксируется одно из двух возможных направлений обхода контура. Это направление объявляется положительным . Противоположное направление обхода контура называется, соответственно, отрицательным . Какое именно направление обхода мы берём в качестве положительного, роли не играет - важно лишь сделать этот выбор.

Магнитный поток через контур считается положительным class="tex" alt="(\Phi > 0)"> , если магнитное поле, пронизывающее контур, направлено туда, глядя откуда обход контура в положительном направлении совершается против часовой стрелки. Если же с конца вектора магнитной индукции положительное направление обхода видится по часовой стрелке, то магнитный поток считается отрицательным .

ЭДС индукции считается положительной class="tex" alt="(\mathcal E_i > 0)"> , если индукционный ток течёт в положительном направлении. В этом случае направление сторонних сил, возникающих в контуре при изменении магнитного потока через него, совпадает с положительным направлением обхода контура.

Наоборот, ЭДС индукции считается отрицательной , если индукционный ток течёт в отрицательном направлении. Сторонние силы в данном случае также будут действовать вдоль отрицательного направления обхода контура.

Итак, пусть контур находится в магнитном поле . Фиксируем направление положительного обхода контура. Предположим, что магнитное поле направлено туда, глядя откуда положительный обход совершается против часовой стрелки. Тогда магнитный поток положителен: class="tex" alt="\Phi > 0"> .

Рис. 5. Магнитный поток возрастает

Стало быть, в данном случае имеем . Знак ЭДС индукции оказался противоположен знаку скорости изменения магнитного потока. Проверим это в другой ситуации.

А именно, предположим теперь, что магнитный поток убывает . По правилу Ленца индукционный ток потечёт в положительном направлении. Стало быть, class="tex" alt="\mathcal E_i > 0"> (рис. 6 ).

Рис. 6. Магнитный поток возрастает class="tex" alt="\Rightarrow \mathcal E_i > 0">

Таков в действительности общий факт: при нашей договорённости о знаках правило Ленца всегда приводит к тому, что знак ЭДС индукции противоположен знаку скорости изменения магнитного потока :

(6)

Тем самым ликвидирован знак модуля в законе электромагнитной индукции Фарадея.

Вихревое электрическое поле

Рассмотрим неподвижный контур, находящийся в переменном магнитном поле. Каков же механизм возникновения индукционного тока в контуре? А именно, какие силы вызывают движение свободных зарядов, какова природа этих сторонних сил?

Пытаясь ответить на эти вопросы, великий английский физик Максвелл открыл фундаментальное свойство природы: меняющееся во времени магнитное поле порождает поле электрическое . Именно это электрическое поле и действует на свободные заряды, вызывая индукционный ток.

Линии возникающего электрического поля оказываются замкнутыми, в связи с чем оно было названо вихревым электрическим полем . Линии вихревого электрического поля идут вокруг линий магнитного поля и направлены следующим образом.

Пусть магнитное поле увеличивается. Если в нём находится проводящий контур, то индукционный ток потечёт в соответствии с правилом Ленца - по часовой стрелке, если смотреть с конца вектора . Значит, туда же направлена и сила, действующая со стороны вихревого электрического поля на положительные свободные заряды контура; значит, именно туда направлен вектор напряжённости вихревого электрического поля.

Итак, линии напряжённости вихревого электрического поля направлены в данном случае по часовой стрелке (смотрим с конца вектора , (рис. 7 ).

Рис. 7. Вихревое электрическое поле при увеличении магнитного поля

Наоборот, если магнитное поле убывает, то линии напряжённости вихревого электрического поля направлены против часовой стрелки (рис. 8 ).

Рис. 8. Вихревое электрическое поле при уменьшении магнитного поля

Теперь мы можем глубже понять явление электромагнитной индукции. Суть его состоит именно в том, что переменное магнитное поле порождает вихревое электрическое поле. Данный эффект не зависит от того, присутствует ли в магнитном поле замкнутый проводящий контур или нет; с помощью контура мы лишь обнаруживаем это явление, наблюдая индукционный ток.

Вихревое электрическое поле по некоторым свойствам отличается от уже известных нам электрических полей: электростатического поля и стационарного поля зарядов, образующих постоянный ток.

1. Линии вихревого поля замкнуты, тогда как линии электростатического и стационарного полей начинаются на положительных зарядах и оканчиваются на отрицательных.
2. Вихревое поле непотенциально: его работа перемещению заряда по замкнутому контуру не равна нулю. Иначе вихревое поле не могло бы создавать электрический ток! В то же время, как мы знаем, электростатическое и стационарное поля являются потенциальными.

Итак, ЭДС индукции в неподвижном контуре - это работа вихревого электрического поля по перемещению единичного положительного заряда вокруг контура .

Пусть, например, контур является кольцом радиуса и пронизывается однородным переменным магнитным полем. Тогда напряжённость вихревого электрического поля одинакова во всех точках кольца. Работа силы , с которой вихревое поле действует на заряд , равна:

Следовательно, для ЭДС индукции получаем:

ЭДС индукции в движущемся проводнике

Если проводник перемещается в постоянном магнитном поле, то в нём также появляется ЭДС индукции. Однако причиной теперь служит не вихревое электрическое поле (оно не возникает - ведь магнитное поле постоянно), а действие силы Лоренца на свободные заряды проводника.

Рассмотрим ситуацию, которая часто встречается в задачах. В горизонтальной плоскости расположены параллельные рельсы, расстояние между которыми равно . Рельсы находятся в вертикальном однородном магнитном поле . По рельсам движется тонкий проводящий стержень со скоростью ; он всё время остаётся перпендикулярным рельсам (рис. 9 ).

Рис. 9. Движение проводника в магнитном поле

Возьмём внутри стержня положительный свободный заряд . Вследствие движения этого заряда вместе со стержнем со скоростью на заряд будет действовать сила Лоренца:

Направлена эта сила вдоль оси стержня, как показано на рисунке (убедитесь в этом сами - не забывайте правило часовой стрелки или левой руки!).

Сила Лоренца играет в данном случае роль сторонней силы: она приводит в движение свободные заряды стержня. При перемещении заряда от точки к точке наша сторонняя сила совершит работу:

(Длину стержня мы также считаем равной .) Стало быть, ЭДС индукции в стержне окажется равной:

(7)

Таким образом, стержень аналогичен источнику тока с положительной клеммой и отрицательной клеммой . Внутри стержня за счёт действия сторонней силы Лоренца происходит разделение зарядов: положительные заряды двигаются к точке , отрицательные - к точке .

Допустим сначала,что рельсы непроводят ток.Тогда движение зарядов в стержне постепенно прекратится. Ведь по мере накопления положительных зарядов на торце и отрицательных зарядов на торце будет возрастать кулоновская сила, с которой положительный свободный заряд отталкивается от и притягивается к - и в какой-то момент эта кулоновская сила уравновесит силу Лоренца. Между концами стержня установится разность потенциалов, равная ЭДС индукции (7) .

Теперь предположим, что рельсы и перемычка являются проводящими. Тогда в цепи возникнет индукционный ток; он пойдёт в направлении (от «плюса источника» к «минусу» N ). Предположим, что сопротивление стержня равно (это аналог внутреннего сопротивления источника тока), а сопротивление участка равно (сопротивление внешней цепи). Тогда сила индукционного тока найдётся по закону Ома для полной цепи:

Замечательно, что выражение (7) для ЭДС индукции можно получить также с помощью закона Фарадея. Сделаем это.
За время наш стержень проходит путь и занимает положение (рис. 9 ). Площадь контура возрастает на величину площади прямоугольника :

Магнитный поток через контур увеличивается. Приращение магнитного потока равно:

Скорость изменения магнитного потока положительна и равна ЭДС индукции:

Мы получили тот же самый результат, что и в (7) . Направление индукционного тока, заметим, подчиняется правилу Ленца. Действительно, раз ток течёт в направлении , то его магнитное поле направлено противоположно внешнему полю и, стало быть, препятствует возрастанию магнитного потока через контур.

На этом примере мы видим, что в ситуациях, когда проводник движется в магнитном поле, можно действовать двояко: либо с привлечением силы Лоренца как сторонней силы, либо с помощью закона Фарадея. Результаты будут получаться одинаковые.

Изучение возникновения электрического тока всегда волновало ученых. После того, как в начале XIX века датский ученый Эрстед выяснил, что вокруг электрического тока возникает магнитное поле, ученые задались вопросом: может ли магнитное поле порождать электрический ток и наоборот.Первым ученым, кому это удалось, был ученый Майкл Фарадей.

Опыты Фарадея

После многочисленных проведенных опытов Фарадей смог достичь кое-каких результатов.

1.Возникновение электрического тока

Для проведения опыта он взял катушку с большим количеством витков и присоединил ее к миллиамперметру (прибору, измеряющему силу тока). По направлению вверх и вниз ученый передвигал магнит по катушке.

Во время проведения эксперимента, в катушке действительно появлялся электрический ток по причине изменения магнитного поля вокруг нее.

По наблюдениям Фарадея стрелка миллиамперметра отклонялась и указывала на то, что движение магнита порождает собой электрический ток. При остановке магнита стрелка показывала нулевую разметку, т.е. ток не циркулировал по цепи.


рис. 1 Изменение силы тока в катушке за счет передвижения реjcтата

Данное явление, при котором ток возникает под действием переменного магнитного поля в проводнике, назвали явлением электромагнитной индукции.

2.Изменение направления индукционного тока

В своих последующих исследованиях Майкл Фарадей пытался выяснить, что влияет на направление возникающего индукционного электрического тока. Проводя опыты, он заметил, что изменяя числа мотков на катушке или полярность магнитов, направление электрического тока, которое возникает в замкнутой сети меняется.

3.Явление электромагнитной индукции

Для проведения опыта ученый взял две катушки, которые расположил близко друг к другу. Первая катушка, имеющая большое количество витков проволоки, была подсоединена к источнику тока и ключу, замыкающему и размыкающему цепь. Вторую такую же катушку он присоединил к миллиамперметру уже без подключения к источнику тока.

Проводя эксперимент, Фарадей заметил, что при замыкании электрической цепи возникает индуцированный ток, что видно по движению стрелки миллиамперметра. При размыкании цепи миллиамперметр также показывал, что в цепи есть электрический ток, но показания были прямо противоположными. Когда же цепь была замкнута и равномерно циркулировала ток, тока в электрической цепи согласно данным миллиамперметра не было.

https://youtu.be/iVYEeX5mTJ8

Вывод из экспериментов

В результате открытия Фарадея была доказана следующая гипотеза: электрический ток появляется только при изменении магнитного поля. Также было доказано, что изменение числа витков в катушке изменяет значение силы тока (увеличение мотков увеличивает силу тока). Причем индуцированный электрический ток может появиться в замкнутой цепи только при наличии переменного магнитного поля.

От чего зависит индукционный электрический ток?

Основываясь на всем вышесказанном, можно отметить, что даже если есть магнитное поле, это не приведет к возникновению электрического тока, если данное поле не будет при этом переменным.

Так от чего же зависит величина индукционного поля?

  1. Число витков на катушке;
  2. Скорость изменения магнитного поля;
  3. Скорость движения магнита.

Магнитный поток является величиной, которая характеризует магнитное поле. Изменяясь, магнитный поток приводит к изменению индуцированного электрического тока.


рис.2 Изменение силы тока при перемещении а) катушки, в котором находится соленоид; б) постоянного магнита, внесением его в катушку

Закон Фарадея

Основываясь на проведенных опытах, Майкл Фарадей сформулировал закон электромагнитной индукции. Закон заключается в том, что, магнитное поле при своем изменении приводит к возникновению электрического тока, Ток же указывает на наличие электродвижущей силы электромагнитной индукции (ЭДС).

Скорость магнитного тока изменяясь влечет за собой изменение скорости тока и ЭДС.

Закон Фарадея: ЭДС электромагнитной индукции равна численно и противоположна по знаку скорости изменения магнитного потока, который проходит через поверхность, ограниченную контуром

Индуктивность контура. Самоиндукция.

Магнитное поле создается в том случае, когда ток протекает в замкнутом контуре. Сила тока при этом влияет на магнитный поток и индуцирует ЭДС.

Самоиндукция – явление, при котором ЭДС индукции возникает при изменении силы тока в контуре.

Самоиндукция изменяется в зависимости от особенностей формы контура, его размеров и среды, его содержащей.

При увеличении электрического тока, ток самоиндукции контура может замедлить его. При его уменьшении, ток самоиндукции, напротив, не дает ему так быстро убывать. Таким образом, контур начинает обладать своей электрической инертностью, замедляющей любое изменение тока.

Применение индуцированного ЭДС

Явление электромагнитной индукции имеет применение на практике в генераторах, трансформаторах и двигателях, работающих на электричестве.

При этом ток для этих целей получают следующими способами:

  1. Изменение тока в катушке;
  2. Движение магнитного поля через постоянные магниты и электромагниты;
  3. Вращение витков или катушек в постоянном магнитном поле.

Открытие электромагнитной индукции Майкла Фарадея внесло большой вклад в науку и в нашу обыденную жизнь. Это открытие послужило толчком для дальнейших открытий в области изучения электромагнитных полей и имеет широкое применение в современной жизни людей.

Напомним некоторые простейшие опыты, в которых наблюдается возникновение электрического тока в результате электромагнитной индукции.

Один из таких опытов изображен на рис. 253. Если катушку, состоящую из большого числа витков проволоки, быстро надевать на магнит или сдергивать с него (рис. 253, а), то в ней возникает кратковременный индукционный ток, который можно обнаружить по отбросу стрелки гальванометра, соединенного с концами катушки. То же имеет место, если магнит быстро вдвигать в катушку или выдергивать из нее (рис. 253, б). Значение имеет, очевидно, только относительное движение катушки и магнитного поля. Ток прекращается, когда прекращается это движение.

Рис. 253. При относительном перемещении катушки и магнита в катушке возникает индукционный ток: а) катушка надевается на магнит; б) магнит вдвигается в катушку

Рассмотрим теперь несколько дополнительных опытов, которые позволят нам в более общем виде сформулировать условия возникновения индукционного тока.

Первая серия опытов: изменение магнитной индукции поля, в котором находится индукционный контур (катушка или рамка).

Катушка помещена в магнитное поле, например внутрь соленоида (рис. 254, а) или между полюсами электромагнита (рис. 254, б). Установим катушку так, чтобы плоскость ее витков была перпендикулярна к линиям магнитного поля соленоида или электромагнита. Будем изменять магнитную индукцию поля, быстро изменяя силу тока в обмотке (с помощью реостата) или просто выключая и включая ток (ключом). При каждом изменении магнитного поля стрелка гальванометра дает резкий отброс; это указывает на возникновение в цепи катушки индукционного электрического тока. При усилении (или возникновении) магнитного поля возникнет ток одного направления, при его ослаблении (или исчезновении) – обратного. Проделаем теперь тот же опыт, установив катушку так, чтобы плоскость ее витков была параллельна направлению линий магнитного поля (рис. 255). Опыт даст отрицательный результат: как бы мы ни изменяли магнитную индукцию поля, мы не обнаружим в цепи катушки индукционного тока.

Рис. 254. В катушке возникает индукционный ток при изменении магнитной индукции, если плоскость ее витков перпендикулярна к линиям магнитного поля: а) катушка в поле соленоида; б) катушка в поле электромагнита. Магнитная индукция изменяется при замыкании и размыкании ключа или при изменении силы тока в цепи

Рис. 255. Индукционный ток не возникает, если плоскость витков катушки параллельна линиям магнитного поля

Вторая серия опытов: изменение положения катушки, находящейся в неизменном магнитном поле.

Поместим катушку внутрь соленоида, где магнитное поле однородно, и будем быстро поворачивать ее на некоторый угол вокруг оси, перпендикулярной к направлению поля (рис. 256). При всяком таком повороте гальванометр, соединенный с катушкой, обнаруживает индукционный ток, направление которого зависит от начального положения катушки и от направления вращения. При полном обороте катушки на 360° направление индукционного тока изменяется дважды: всякий раз, когда катушка проходит положение, при котором плоскость ее перпендикулярна к направлению магнитного поля. Конечно, если вращать катушку очень быстро, то индукционный ток будет так часто изменять свое направление, что стрелка обычного гальванометра не будет успевать следовать за этими переменами и понадобится иной, более «послушный» прибор.

Рис. 256. При вращении катушки в магнитном поле в ней возникает индукционный ток

Если, однако, перемещать катушку так, чтобы она не поворачивалась относительно направления поля, а лишь перемещалась параллельно самой себе в любом направлении вдоль поля, поперек его или под каким-либо углом к направлению поля, то индукционный ток возникать не будет. Подчеркнем еще раз: опыт по перемещению катушки проводится в однородном поле (например, внутри длинного соленоида или в магнитном поле Земли). Если поле неоднородно (например, вблизи полюса магнита или электромагнита), то всякое перемещение катушки может сопровождаться появлением индукционного тока, за исключением одного случая: индукционный ток не возникает, если катушка движется так, что плоскость ее все время остается параллельной направлению поля (т. е. сквозь катушку не проходят линии магнитного поля).

Третья серия опытов: изменение площади контура, находящегося в неизменном магнитном поле.

Подобный опыт можно осуществить по следующей схеме (рис. 257). В магнитном поле, например между полюсами большого электромагнита, поместим контур, сделанный из гибкого провода. Пусть первоначально контур имел форму окружности (рис. 257, а). Быстрым движением руки можно стянуть контур в узкую петлю, значительно уменьшив таким образом охватываемую им площадь (рис. 257, б). Гальванометр покажет при этом возникновение индукционного тока.

Рис. 257. В катушке возникает индукционный ток, если изменяется площадь ее контура, находящегося в неизменном магнитном поле и расположенного перпендикулярно к линиям магнитного поля (магнитное поле направлено от наблюдателя)

Еще удобнее осуществление опыта с изменением площади контура по схеме, изображенной на рис. 258. В магнитном поле расположен контур , одна из сторон которого (на рис. 258) сделана подвижной. При каждом ее передвижении гальванометр обнаруживает возникновение в контуре индукционного тока. При этом при передвижении влево (увеличение площади ) индукционный ток имеет одно направление, а при передвижении вправо (уменьшение площади ) – противоположное. Однако и в этом случае изменение площади контура не дает никакого индукционного тока, если плоскость контура параллельна направлению магнитного поля.

Рис. 258. При движении стержня и изменении вследствие этого площади контура , находящегося в магнитном поле , в контуре возникает ток.

Сопоставляя все описанные опыты, мы можем сформулировать условия возникновения индукционного тока в общей форме. Во всех рассмотренных случаях мы имели контур, помещенный в магнитное поле, причем плоскость контура могла составлять тот или иной угол с направлением магнитной индукции. Обозначим площадь, ограниченную контуром, через , магнитную индукцию поля через , а угол между направлением магнитной индукции и плоскостью контура через . В таком случае составляющая магнитной индукции, перпендикулярная к плоскости контура, будет равна по модулю (рис. 259)

Рис. 259. Разложение магнитной индукции на составляющую , перпендикулярную к плоскости индукционного контура, и составляющую , параллельную этой плоскости

Произведение мы будем называть потоком магнитной индукции или, короче, магнитным потоком через контур; эту величину мы будем обозначать буквой . Таким образом,

. (138.1)

Во всех без исключения рассмотренных случаях мы тем или иным способом изменяли магнитный поток . В одних случаях мы осуществляли это путем изменения, магнитной индукции (рис. 254); в других случаях изменялся угол (рис. 256); в третьих – площадь (рис. 257). В общем случае, конечно, возможно одновременное изменение всех этих величин, определяющих магнитный поток через контур. Внимательное рассмотрение самых разнообразных индукционных опытов показывает, что индукционный ток возникает тогда и только тогда, когда изменяется магнитный поток ; индукционный ток никогда не возникает, если магнитный поток через данный контур остается неизменным. Итак:

При всяком изменении магнитного потока через проводящий контур в этом контуре возникает электрический ток.

В этом и заключается один из важнейших законов природы – закон электромагнитной индукции, открытый Фарадеем в 1831 г.

138.1. Катушки I и II находятся одна внутри другой (рис. 260). В цепь первой включена батарея, в цепь второй – гальванометр. Если в первую катушку вдвигать или выдвигать из нее железный стержень, то гальванометр обнаружит возникновение во второй катушке индукционного тока. Объясните этот опыт.

Рис. 260. К упражнению 138.1

138.2. Проволочная рамка вращается в однородном магнитном поле вокруг оси, параллельной магнитной индукции. Будет ли в ней возникать индукционный ток?

138.3. Возникает ли э. д. с. индукции на концах стальной оси автомобиля при его движении? При каком направлении движения автомобиля эта э. д. с. наибольшая и при каком наименьшая? Зависит ли э. д. с. индукции от скорости автомобиля?

138.4. Шасси автомобиля вместе с двумя осями составляет замкнутый проводящий контур. Индуцируется ли в нем ток при движении автомобиля? Как согласовать ответ этой задачи с результатами задачи 138.3?

138.5. Почему при ударе молнии иногда в нескольких метрах от места удара обнаруживались повреждения чувствительных электроизмерительных приборов, а также плавились предохранители в осветительной сети?

ИНДУКЦИОННЫЙ ТОК — это электрический ток, возникающий при изменении потока магнитной индукции в замкнутом проводящем контуре. Это явление носит название электромагнитной индукции. Хотите узнать какое направление индукционного тока? Росиндуктор — это торговый информационный портал, где вы найдете информацию про ток.

Определяющее направление индукционного тока правило звучит следующим образом: «Индукционный ток направлен так, чтобы своим магнитным полем противодействовать изменению магнитного потока, которым он вызван». Правая рука развернута ладонью навстречу магнит¬ным силовым линиям, при этом большой палец направлен в сторону движения проводника, а четыре пальца по-казывают, в каком направлении будет течь индукционный ток. Перемещая проводник, мы перемещаем вместе с проводчиком все электроны, заключенные в нем, а при перемещении в магнитном поле электрических зарядов на них будет действовать сила по правилу левой руки.

Направление индукционного тока, как и его величина, определяется правилом Ленца, в котором говорится, что направление индукционного тока всегда ослабляет действие фактора, возбудившего ток. При изменении потока магнитного поля через контур направление индукционного тока будет таким, чтобы скомпенсировать эти изменения. Когда магнитное поле возбуждающее ток в контуре создается в другом контуре, направление индукционного тока зависит от характера изменений: при увеличении внешнего тока индукционный ток имеет противоположное направление, при уменьшении — направлен в ту же сторону и стремиться усилить поток.

Катушка с индукционным током имеет два полюса (северный и южный), которые определяются в зависимости от направления тока: индукционные линии выходят из северного полюса. Приближение магнита к катушке вызывает появление тока с направлением, отталкивающим магнит. При удалении магнита ток в катушке имеет направление, способствующее притягиванию магнита.


Индукционный ток возникает в замкнутом контуре, находящемся в переменном магнитном поле. Контур может быть как неподвижным (помещенным в изменяющийся поток магнитной индукции), так и движущимся (движение контура вызывает изменение магнитного потока). Возникновение индукционного тока обуславливает вихревое электрическое поле, которое возбуждается под воздействием магнитного поля.

О том, как создать кратковременный индукционный ток можно узнать из школьного курса физики.

Для этого есть несколько способов:

  • - перемещение постоянного магнита или электромагнита относительно катушки,
  • - перемещение сердечника относительно вставленного в катушку электромагнита,
  • - замыкание и размыкание цепи,
  • - регулирование тока в цепи.


Основной закон электродинамики (закон Фарадея) гласит, что сила индукционного тока для любого контура равна скорости изменения магнитного потока, проходящего через контур, взятой со знаком минус. Сила индукционного тока носит название электродвижущей силы.





Top